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Today’s Session: RDF(S) semantics

What is Semantics?

What is Model-theoretic Semantics?
Model-theoretic Semantics for RDF(S)
What is Proof-theoretic Semantics?
Proof-theoretic Semantics for RDF(S)
Class Project

Class Presentations
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Syntax and Semantics

Syntax: character strings without meaning
Semantics: meaning of the character strings

Show pixel set, 354" on
screen if ,A" is of type ,B“.

IF cond(A,B)
THEN display(_354)

Syntax = meaning, e.g.,

assignment of meaning in the world“
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Semantics of Programming Languages o

KNOo.e.SIS

computing factorial
~ Intended Semantics

Syntax

FUNCTION f(n:natural):natural;
BEGIN

IF n=0 THEN f:=1
ELSE f:=n*f(n-1);
END;

What happens at program Formal Semantics
execution

Procedural Semantics

e ‘
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Semantics of Logic

All humans

Syntax are mortal

VX (p(X) — q(X)) Intended Semantics

4 logical

consequence

Model-theoretic semantics

provability
in a calculus Proof-theoretic semantics

— n )
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Recall: Implicit knowledge ——

KNO.e.SIS

 |f an RDFS document contains

u rdf:type ex:Textbook .

and

ex:Textbook rdfs:subClassOf ex:Book .

then

U rdf:type ex:Book .

Is implicitly also the case: it’'s a logical consequence. (We can
also say it is deduced (deduction) or inferred (inference).

We do not have to state this explicitly.

Which statements are logical consequences is governed by the
formal semantics (covered in the next session).
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Recall: Implicit knowledge

e From

ex:Textbook rdfs:subClassOf ex:Book .

ex :Book rdfs:subClassOf ex:PrintMedia .

the following is a logical consequence:

ex:Textbook rdfs:subClassOf ex:PrintMedia .

l.e. rdfs:subClassOf is transitive.

B— n )
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What Semantics Is Good For =

KNOo.e.SIS

 Opinions Differ. Here’'s my take.

« Semantic Web requires a shareable, declarative and computable
semantics.

 |l.e.,, the semantics must be a formal entity which is clearly
defined and automatically computable.

« Ontology languages provide this by means of their formal
semantics.

« Semantic Web Semantics is given by a relation —the logical
consequence relation.

L] |
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In other words

We capture the meaning of information

not by specifying its meaning (which is impossible)
but by specifying

how information interacts with other information.

We describe the meaning indirectly through its effects.
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Today’s Session: RDF(S) semantics
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Model-theoretic Semantics for RDF(S)
What is Proof-theoretic Semantics?
Proof-theoretic Semantics for RDF(S)
Class Project

Class Presentations
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Model-theoretic Semantics =

KNO.e.S51S

* You need:

— alanguage/syntax

— anotion of model for sentences in the language
 Models

— are made such that each sentence is either true or false in
each model

— If asentence ais true in a model M, then we write MF«

 Logical consequence: j
— Bis alogical consequence of o (written o). if
for all M with MEa., we also have MEg =
— If K is a set of sentences, we write KEg if MEG for each MEK
— If Jis another set of sentences, we write KEJ if KEG for each
pged
(note that the notation E is overloaded)
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Logical Consequence —

KNo.e.siIs

propositions

=

logical
/ (ntailmem\‘
P P2

Pa

» » X

models models models
of p, of p, of p,
interpretations
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Model theory (contrived) example

« Language:
variables ...,w,Xx,y,z,...
symbol i
allowed sentences: anb (fora, b any variables)

 We want to know:

What are the logical consequences of the set

{Xny,ynz}

« To answer this, we must say what the models in our semantics
are.

I E——
p— )
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Model theory (contrived) example

« Say, amodel | of a set K of sentences consists of
— aset C of cars and

— afunction I(-) which maps each variableto acar in C

such that, for each sentence anb in K we have that
I(a) has more horsepower than I(b).

« Wenowclaimthat{xny,ynz} Exnz.
 Proof: Consider any model Mof {x ny, Yy nz}.
Since MF {x nvVy, Yy nz}, we know that

M(x) has more horsepower than M(y) and

M(y) has more horsepower than M(z).
Hence, M(x) has more horsepower than M(z), i.e. MF x n z.

This argument holds for all models of {x nvy, y n z}, therefore
{xny,ynztExnz.
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Model theory (contrived) example o

KNOo.e.SIS

 An interpretation | for a our language consists of
— aset C of cars and
— afunction I(-) which maps each variable to a car in C.

(and that’s it, i.e. no information whether a sentence is true or
false with respect to I).

I E——
p— X ‘
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Today’s Session: RDF(S) semantics

What is Semantics?

What is Model-theoretic Semantics?
Model-theoretic Semantics for RDF(S)
What is Proof-theoretic Semantics?
Proof-theoretic Semantics for RDF(S)
Class Project

Class Presentations
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Now let’s do this for RDF(S) ——

KNo.e.sis

 Language: Whatever is valid RDF(S).
 Sentences are triples. (Graphs are sets of triples.)

* Interpretations are given via sets and functions from language
vocabularies to these sets.

 Models are defined such that they capture the intended meaning
of the RDF(S) vocabulary.

e And there are three different notions:

QDFS-interpreta@

RDF-interpretations

simple interpretations

H e
—
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Simple Interpretations

So we define: a simple interpretation I of a given vocabulary V' consists of

e /R, anon-empty set of resources, alternatively called domain or universe
of discourse of 7,

e [P, the set of properties of 7 (which may overlap with /R),

e lixr., a function assigning to each property a set of pairs from IR,
i.e. Ixr : IP — 2MXIE where Tpxr(p) is called the extension of the
property p,

o lg, a function, mapping URIs from V' into the union of the sets /IR and
IP,ie.1g:V — IRUIP,

e [;,, a function from the typed literals from V" into the set IR of resources
and

e LV, a particular subset of IR, called the set of literal values, containing
(at least) all untyped literals from V.

e ‘
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Simple Interpretations

Now define an interpretation function 1 (written as exponent).

e every untyped literal "a" is mapped to a, formally: ("a")f = a,

e cvery untyped literal carrying language information "a"@t is mapped
to the pair (a,t),ie. ("a"@Qt)! = (a,t),

e every typed literal 1 is mapped to Iy, (1), formally: 17 =1Ip,(1), and

e every URI u is mapped to Ig(u), i.e. u? = Is(u).

I E——
p— )

WRIGHT STATE KR4SW — Winter 2012 — Pascal Hitzler 22



Simple Interpretations

H e
—

— r
WRIGHT STATE

Nnames

literals

URIs

untyped

—
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Simple models €

<No.e.SIS

e Thetruthvalue s p o. ofa(grounded*) triple s p o. istrue

exactly if ( s, p,© are contained in V) and xSI I‘ € lpxr (PI)
<
names Q
D
literals URIs nCT
untyped typed i
. =1
* A grounded triple g
does not contain o
a blank node. %
=3
N

H e
LT
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Simple models —

KNO.e.S51S

e Thetruthvalue s p o. ofa(grounded*) triple s p o. istrue
I, _Z._x I)

exactly if ( s, p,© are contained in V) and (s € Imxr(p

triple

* A grounded triple
does not contain
a blank node.

e ‘
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What about blank nodes? =

KNo.e.sis

Say, A is a function from blank nodes to URISs.
[these URIs need not be contained in the graph we’re looking at]

 If,inagraph G, we replace each blank node x by A(x), then we
obtain a graph G’ which we call a grounding of G.

« We know how to do the semantics for the grounded graphs.

e So define:
| E G if and only if | E G’ for at least one grounding G’ of G.

H e
—
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Simple entailment

« A graph G simply entails a graph G’ if every simple interpretation
that is a model of G is also a model of G'.

 (Recall that a simple interpretation is a model of agraph Gifitis
a model of each triplein G.)

B— n )
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It’s really simple

 Basically, GEG’if and only if G’ can be obtained from G by
replacing some nodes in G by blank nodes.

o It’s really simple entailment.
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RDF-Interpretations Part 1

An RDF-interpretation of a vocabulary V is a simple interpretation of the
vocabulary V U Vipr that additionally satisfies the following conditions:

e 1 € [P exactly if (i, rdf:Property’) € Igxr(rdf:type’).

o if "s"""rdf:XMLLiteral is contained in V and s is a well-typed XML-
Literal, then

- In("s"""rdf:XMLLiteral) is the XML value of s;
- I ("s"""rdf:XMLLiteral) € LV;
- (IL("s"~"rdf:XMLLiteral), rdf:XMLLiteral’)

€ Ty (rdf :type?)

e if "s"""rdf:XMLLiteral is contained in V' and s is an ill-typed XML
literal, then

- Ip("s"""rdf:XMLLiteral) ¢ LV and

- (I ("s"""rdf:XMLLiteral).rdf:XMLLiterall)
Z I (rdf : type?).

| L
— .
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RDF-Interpretations Part 2 o

KNOo.e.SIS

* In addition, each RDF-interpretation has to evaluate all the
following triples to true:

rdf : type rdf : type rdf :Property.
rdf : subject rdf : type rdf : Property.
rdf : predicate rdf:type rdf:Property.
rdf : object rdf : type rdf :Property.
rdf : first rdf : type rdf :Property.
rdf : rest rdf : type rdf :Property.
rdf : value rdf : type rdf :Property.
rdf : 1 rdf : type rdf : Property.
rdf : nil rdf : type rdf:List.

p— )
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RDFS-Interpretations Part 1

« Define (for a given RDF-interpretation Z ):

— Tepxyr @ IR — 20 We define Icpxr(y) to contain exactly those
elements . for which (., y) is contained in Igxr (rdf : type?). The set Iopxr(y)
is then also called the (class) extension of y.

- IC = Icm(rde:ClaSSI).
o /R =Ilcpxr (rdfs:ResourceI)
o LV = Icpxr(rdfs:Literal?)

o If (&, y) € Igxr(rdfs:domain?) and (u,v) € Ipxr(x),
then v € Iopxr(y).

o If (x.y) € Ipxr(rdfs:range’) and (u,v) € Igxr (),
then v € Iopxr(y).

o Ipxy(rdfs:subProperty0f’) is reflexive and transitive on IP.

T
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RDFS-Interpretation Part 2 o

KNOo.e.SIS

o If (. y) € Iy (rdfs:subProperty0f’),
then «,y € IP and Igxr () C Iexr(y).
o If xr € IC,
then (. rdfs:Resource’) € Iy (rdfs:subClass0f’).
o If (i, y) € Ipxr(rdfs:subClass0f’),
then @,y € IC and lcpxr () € Lopxr (v).
o Iixr(rdfs:subClass0f?) is reflexive and transitive on IC'.
o If v € Icpxr(rdfs:ContainerMembershipProperty?),
then (x,rdfs:member’?) € Ipxp(rdfs: subProperty0f?).
o If v € Icpxy(rdfs:Datatype’),
then (r.rdfs:Literal?) € Ipxp(rdfs:subClass0f?)

I ————————
—
WRIGHT STATE
o VERMSI]
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RDFS-Interpretations Part 3

 Furthermore, all of the following must be satisfied.

rdf:type
rdfs:domain
rdfs:range

rdf :subject
rdf :predicate
rdf:object
rdfs :member
rdf:first

rdf :rest
rdfs:seellso

rdfs:1sDefinedBy

WRIGHT STATE

rdfs:
rdfs:
rdfs:
rdfs:subProperty0f rdfs:
rdfs:subClassOf rdfs:
rdfs:
rdfs:
rdfs:
rdfs:
rdfs:
rdfs:
rdfs:

rdfs:
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domain
domain
domain
domain
domain
domain
domain
domain
domain
domain
domain
domain
domain

rdfs:Resource

rdf :Property .
rdf :Property .
rdf :Property .

rdfs:Class
rdf :Statement
rdf :Statement
rdf :Statement
rdfs:Resource
rdf:List
rdf:List
rdfs:Resource
rdfs:Resource
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RDFS-Interpretations Part 4 ——

KNo.e.sis

 Furthermore, all of the following must be satisfied.

rdfs:comment rdfs:domain rdfs:Resource
rdfs:label rdfs:domain rdfs:Resource
rdf :value rdfs:domain rdfs:Resource
rdf :type rdfs:range rdfs:Class
rdfs:domain rdfs:range rdfs:Class
rdfs:range rdfs:range rdfs:Class
rdfs:subProperty0f rdfs:range rdf :Property .
rdfs:subClassOf rdfs:range rdfs:Class
rdf:subject rdfs:range rdfs:Resource
rdf :predicate rdfs:range rdfs:Resource
rdf:object rdfs:range rdfs:Resource
rdfs:member rdfs:range rdfs:Resource
rdf:first rdfs:range rdfs:Resource
rdf:rest rdfs:range rdf:List
rdfs:seelAlso rdfs:range rdfs:Resource
rdfs:isDefinedBy rdfs:range rdfs:Resource
rdfs:comment rdfs:range rdfs:Literal .
——— rdfs:label rdfs:range rdfs:Literal . =

WRIGHT STATE rdf :value rdfs:range rdfs:Resource . 34



RDFS-Interpretations Part 5

—

<No.e.sis

 Furthermore, all of the following must be satisfied.

rdfs:ContainerMembershipProperty

rdfs:subClass0f
rdf:Alt rdfs:subClass0f
rdf:Bag rdfs:subClass0f
rdf:Seq rdfs:subClass0f
rdfs:isDefinedBy rdfs:subPropertyOf
rdf:XMLLiteral rdf:type
rdf:XMLLiteral rdfs:subClass0f
rdfs:Datatype rdfs:subClass0f
rdf: _1 rdf:type

rdf :Property .

rdfs:
rdfs:
rdfs:

rdfs:

rdfs:

rdfs:
rdfs:

Container .
Container .
Container .

seellso
Datatype

Literal
Class

rdfs:ContainerMembershipProperty .

rdf: _z rdfs:domain
rdf:_i rdfs:range

rdfs:Resource .
rdfs:Resource .

H e
LI 1
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Today’s Session: RDF(S) semantics

What is Semantics?

What is Model-theoretic Semantics?
Model-theoretic Semantics for RDF(S)
What is Proof-theoretic Semantics?
Proof-theoretic Semantics for RDF(S)
Class Project

Class Presentations
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Back to our contrived example o

KNo.e.sis

« Can we find an algorithm to compute all logical consequences of
a set of sentences?

 Algorithm Input: set K of sentences

1. The algorithm non-deterministically selects two sentences
from K. If the first sentenceis a n b, and the second

sentenceis b pc, then add anc to K.
IF anbeK and bpceK THEN K« {anc}
2. Repeat step 1 until no selection results in a change of K.
3. Output: K

H e
—
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Back to the example o

KNo.e.sis

« The algorithm produces only logical consequences: it is sound
with respect to the model-theoretic semantics.

« The algorithm produces all logical consequences: it is complete
with respect to the model-theoretic semantics.

« The algorithm always terminates.
« The algorithm is non-deterministic.

« What is the computational complexity of this algorithm?

H e
—
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What do we gain? o

KNo.e.sis

e Recall:

« (is alogical consequence of a (written aFp), if
for all M with MEa, we also have MEQ are

 Implementing model-theoretic semantics directly is not feasible:
We would have to deal with all models of a knowledge base.
Since there are a lot of cars in this world, we would have to
check a lot of possibilities.

 Proof theory reduces model-theoretic semantics to symbol
manipulation! It removes the models from the process.

e
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Deduction rules =

KNO.e.sIs

IF anbeK and bnpceK THEN K<« {anc}

Is a so-called deduction rule. Such rules are usually written
schematically as

anb bnc
anc

t
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—

FI rSt 1 some n Otatl on KPO.E.SI1S

e o and b can refer to arbitrary URIs (i.e. anything admissible for the
predicate position in a triple),

e _:n will be used for the ID of a blank node,

e u and v refer to arbitrary URIs or blank node IDs (i.e. any possible
subject of a triple),

e =z and y can be used for arbitrary URIs, blank node IDs or literals
(i.e. anything admissible for the object position in a triple), and

e 1 may be any literal.
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Simple Entailment Rules

U a I
sel
uUu a _.n
U a I
se?2
n a <&

_:n must not be contained in the graph the rule is applied to

t
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Additional RDF-entailment Rules =

KNOo.e.SIS

U a T rdfax for all RDF axiomatic triples U 4 I.

g where _:n does not yet occur in the graph

U a Yy

rdfl

a rdf:type rdf:Property .

u a 1
_:n rdf:type rdf:XMLLiteral

rdf2

where :n does not yet occur in the graph,
unless it has been introduced by a
preceding application of the lg rule

p— )
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Additional RDFS-entailment Rules - | EE

U a T rdfax for all RDFS axiomatic triples U @ &I.
ual rdfs1 with _:n as usual
_:n rdf:type rdfs:Literal .
dfs:d i . .
a I S omalin T u a vy ]_‘de2
u rdf:type = .
a rdfs:range z . u a v . rdfs3
v rdf:type @
U a T
rdfsda
u rdf:type rdfs:Resource .
U a v
rdts4b
v rdf:type rdfs:Resource .
—_—_‘ S ———

RIGHT STA KR4SW — Winter 2012 — Pascal Hitzler 45



Additional RDFS-entailment Rules - I =

KNo.e.sis
© rdfs:subProperty0f v . v rdfs:subProperty0f = . 1fsh
Idls
v rdfs:subProperty0f x
u rdf:type rdf:Property .
P PETLy rdfs6
u rdfs:subProperty0f u
a rdfs:subPropertvyv0f b . U a .
perty 4 rdfs7
u by
u rdf:type rdfs:Class .
P rdfs8
# rdfs:subClass0f rdfs:Resource .
u rdfs:subClass0f = . v rdf:type u .
yP rdfs9

v rdf:type z

u rdf:type rdfs:Class .
u rdfs:subClass0f wu

rdfs10

I E——
T
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Additional RDFS-entailment Rules - lli 6

u rdfs:subClass0f v . v rdfs:subClass0f = . 1s11
I'drs
u rdfs:subClass0f =
u rdf:type rdfs:ContainerMembershipProperty . 1fs12
radrs
© rdfs:subProperty0f rdfs:member .
u rdf:type rdfs:Datatype
P jfrp rdfs13
u rdfs:subClass0f rdfs:Literal .
u a i . o] where :nidentifies a blank node introduced by an
= earlier “weakening” of the literal | via the rule Ig

I E——
T
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Completeness? &

KNOo.e.SIS

« The deduction rules for simple and RDF entailment are sound
and complete.

e The deduction rules for RDFS entailment are sound.

The spec says, they are also complete, but they are not:

ex:isHappilyMarriedTo rdfs:subProperty0f _:bnode .
_:bnode rdfs:domain ex:Person .
ex :markus ex:isHappilyMarriedTo ex:anja .

has as logical consequence

ex :markus rdf :type ex:Person .
but this is not derivable using the deduction rules.

e
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Complexity

Simple, RDF, and RDFS entailment are NP-complete problems.

If we disallow blank nodes, all three entailment problems are
polynomial.
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Does RDFS semantics do what it should? —

KNOoO.e.siIs
Does
ex:speaksWith rdfs:domain ex:Homo .
ex :Homo rdfs:subClass0f ex:Primates
entail
ex:speaksWith rdfs:domain ex:Primates .
2

T
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RDF next version —

KNO.e.sSIS
A new W3C working group is currently under way:

http://www.w3.0rg/2011/rdf-wg/

bugfixing (e.g., incompleteness of inference rules)
new features for RDF and RDFS
 blank node identifiers (i.e., URIS)
 working with multiple graphs
JSON serialization
Turtle syntax
forthcoming:
« Semantics and other docs.

p— )
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Class project: next step

keep bugfixing
find, for your RDF Schema ontology, each of the following:
— atriple which is RDFS-entailed, but not RDF-entailed
— atriple which is RDF-entailed, but not simply entailed
— atriple which is simply entailed
For each of them, write down a justification why it is entailed.

send to me by Friday 20t of January
— the current version of your Turtle RDF Schema document
— the three entailed triples with explanations.

B— n )
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Class presentations — first topics

<nothing yet>

I E——
p—

]|
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Class planning (tentative) ——

KNo.e.sis

Tuesday 10 of January: RDF Schema
Thursday 12t of January: RDF and RDFS Semantics
Tuesday 17t of January: RDF and RDFS Semantics

Thursday 19" of January: Exercise Session

Then several OWL sessions.

I E——
p— )
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