Knowledge Representation for the Semantic Web

Winter Quarter 2012

Slides 2 – 01/05/2011

Pascal Hitzler
Kno.e.sis Center
Wright State University, Dayton, OH
http://www.knoesis.org/pascal/
Textbook (required)

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph

Foundations of Semantic Web Technologies

Chapman & Hall/CRC, 2010

Choice Magazine Outstanding Academic Title 2010 (one out of seven in Information & Computer Science)

http://www.semantic-web-book.org
Today: RDF syntax
1. Motivation
2. Triples and Graphs
3. RDF syntaxes: Turtle and RDF/XML
4. Datatypes
5. n-ary relationships
6. Empty nodes
7. Lists
8. Class project
9. Class presentation
Two XML Problems

• How do you encode the piece of knowledge “The book FOST is published by CRC Press”

• <book>
 <title>FOST</title>
 <publisher>CRC Press</publisher>
</book>

• <publisher>
 <name>CRC Press</name>
 <book><title>FOST</title><book>
</publisher>

• etc.
Two XML Problems

- Merging trees is rather cumbersome and the result isn’t always clear.

 - <publisher>
 <name>CRC Press</name>
 <book><title>FOST</title></book>
 </publisher>

 - <book>
 <title>Semantic Web</title>
 <publisher>Springer</publisher>
 </book>
RDF idea

- Use (directed) graphs as data model
RDF

• “Resource Description Framework”

• W3C Recommendation 2004
 http://www.w3.org/RDF/

• RDF is a data model
 – originally for describing metadata for web pages, but has grown beyond that
 – structured information
 – universal, machine-readable data exchange format
 – main syntax uses XML for serialization
Table of contents: RDF

1. Motivation
2. Triples and Graphs
3. RDF syntaxes: Turtle and RDF/XML
4. Datatypes
5. n-ary relationships
6. Empty nodes
7. Lists
8. Class project
9. Class presentation
RDF components

• URIs
 – for referencing resources

• Literals
 – data values

• Empty nodes
 – talking about something which doesn’t have a name (or the name of which isn’t known)
Literals

- for representing data values
- encoded as strings
- interpreted by means of datatypes
- literals without datatype are treated the same as strings
Graphs as sets of triples

- there are several possibilities for representing graphs
- we use: graph as list of (node-edge-node) triples

![Graph Example Diagram]

http://semantic-web-book.org/uri

http://example.org/title

Foundations of Semantic Web Technologies

http://example.org/publishedBy

http://example.org/name

http://crcpress.com/uri

CRC Press
RDF triples

- An RDF triple consists of

 Subject: http://semantic-web-book.org/uri

 Predicate: http://example.org/publishedBy

 Object: http://crcpress.com/uri

(borrowed from linguistics)

- allowed are:
 - In the subject: URIs and empty nodes
 - In the predicate: URIs (usually called properties)
 - In the object: URIs and empty nodes and literals

- Note that the graph can be reconstructed from the list of triples.
Table of contents: RDF

1. Motivation
2. Triples and Graphs
3. RDF syntaxes: Turtle and RDF/XML
4. Datatypes
5. n-ary relationships
6. Empty nodes
7. Lists
8. Class project
9. Class presentation
Turtle – Terse RDF Triple Language

• simple syntax for RDF
• triples are directly listed as such
 – URIs are in <angle brackets>
 – Literals are ”enclosed in quotes”
 – triples end with a full-stop .
 – whitespace (blanks, line feeds) is ignored

<http://semantic-web-book.org/uri>
<http://semantic-web-book.org/uri>
 <http://example.org/title>
 "Foundations of Semantic Web Technologies" .
<http://crcpress.com/uri>
 <http://example.org/name> "CRC Press" .
Turtle

- shortcuts for prefixes

```turtle
@prefix ex: <http://example.org/> .
@prefix crc: <http://crcpress.com/> .

crc:uri ex:name "CRC Press" .
```
Turtle

@prefix ex: <http://example.org/> .
@prefix crc: <http://crcpress.com/> .

crc:uri ex:name "CRC Press" .

- grouping of triples with the same subject
- grouping of triples with same subject and predicate

@prefix ex: <http://example.org/> .
@prefix crc: <http://crcpress.com/> .

book:uri ex:publishedBy crc:uri ;
ex:title "Foundations of Semantic Web Technologies" .
crc:uri ex:name "CRC Press", "CRC" .
XML syntax for RDF

• Turtle is easy to read and write

• But XML is the basis for data transfer on the web

• There’s a lot of tool (and programming library) support for XML

• Hence, the main syntax for RDF is XML-based.

• Turtle is not a W3C recommendation
• The normative syntax for RDF is it’s XML syntax
XML syntax for RDF

- namespaces are used for disambiguating tags
- tags belonging to the RDF language come with a fixed namespace, usually abbreviated ’rdf’

```xml
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:ex ="http://example.org/">
    <rdf:Description rdf:about="http://semantic-web-book.org/uri">
        <ex:publishedBy>
            <rdf:Description rdf:about="http://crcpress.com/uri">
            </rdf:Description>
        </ex:publishedBy>
    </rdf:Description>
</rdf:RDF>
```
XML syntax for RDF

```
<rdf:Description rdf:about="http://semantic-web-book.org/uri">
  <ex:publishedBy>
    <rdf:Description rdf:about="http://crcpress.com/uri">
      </rdf:Description>
  </ex:publishedBy>
</rdf:Description>
```
XML syntax for RDF

- Untyped literals can be left as free text
- A subject can contain several property elements
- Object-descriptions can be used as subject-descriptions for further triples

```xml
<rdf:Description rdf:about="http://semantic-web-book.org/uri">
  <ex:title>Foundations of Semantic Web Technologies</ex:title>
  <ex:publishedBy>
    <rdf:Description rdf:about="http://crcpress.com/uri">
      <ex:name>CRC Press</ex:name>
    </rdf:Description>
  </ex:publishedBy>
</rdf:Description>
```
XML syntax for RDF

- Equivalent representation of literals using XML attributes
 - the attribute-name is then the property-URI

- Equivalent representation of objects by giving their URIs as value of a rdf:resource attribute within a property tag.

```xml
<rdf:Description rdf:about="http://semantic-web-book/uri"
    ex:title= "Foundations of Semantic Web Technologies">
    <ex:publishedBy rdf:resource="http://crcpress.com/uri" />
</rdf:Description>

<rdf:Description rdf:about="http://crcpress.com/uri"
    ex:Name= "CRC Press" />
```
XML syntax for RDF

• The use of namespaces is essential since the use of the colon ‘:’ in XML attributes is not allowed unless it is used with a namespace.

• Problem: namespaces cannot be used in values of XML attributes: `rdf:about="book:uri"` is **wrong** since ‘book’ would be interpreted in the sense of a URI schema.

• Solution: use XML ENTITYs.

```xml
<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE rdf:RDF[
]

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
   xmlns:ex ="http://example.org/">

   <rdf:Description rdf:about="&book;uri">
      <ex:title>Foundations of Semantic Web Technologies</ex:title>
   </rdf:Description>

</rdf:RDF>
```
XML Syntax for RDF

- Use of the base namespace

```xml
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
         xmlns:ex ="http://example.org/"

   <rdf:Description rdf:about="uri">
     <ex:publishedBy rdf:resource="http://crcpress.com/uri" />
   </rdf:Description>

</rdf:RDF>
```
Table of contents : RDF

1. Motivation
2. Triples and Graphs
3. RDF syntaxes: Turtle and RDF/XML
4. Datatypes
5. n-ary relationships
6. Empty nodes
7. Lists
8. Class project
9. Class presentation
Datatypes in RDF

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix ex: <http://www.w3.org/TR/rdf-primer>.

<http://example.org/title> "RDF Primer"^^xsd:string ;
<http://example.org/publicationDate> "2004-02-10"^^xsd:date .

.rdf:Description rdf:about="http://www.w3.org/TR/rdf-primer">
 <ex:title rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 RDF Primer
 </ex:title>
 <ex:publicationDate
 rdf:datatype="http://www.w3.org/2001/XMLSchema#date">
 2004-02-10
 </ex:publicationDate>
</rdf:Description>
Datatypes

- usually use of XML Schema datatype
- Note that the same data value can have different representations:
 "3.14"^^xsd:decimal is the same as "+03.14"^^xsd:decimal but
 "3.14"^^xsd:string is not the same as "+03.14"^^xsd:string
- there is only one required datatype in RDF, called rdf:XMLLiteral
 - arbitrary (balanced) XML fragments
 - special syntax:

```xml
<rdf:Description rdf:about="http://semantic-web-book/uri">
  <ex:title rdf:parseType="Literal">
    Foundations of
  <br />
    Semantic Web Technologies</b>
  </ex:title>
</rdf:Description>
```
<table>
<thead>
<tr>
<th></th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Triples and Graphs</td>
</tr>
<tr>
<td>3</td>
<td>RDF syntaxes: Turtle and RDF/XML</td>
</tr>
<tr>
<td>4</td>
<td>Datatypes</td>
</tr>
<tr>
<td>5</td>
<td>n-ary relationships</td>
</tr>
<tr>
<td>6</td>
<td>Empty nodes</td>
</tr>
<tr>
<td>7</td>
<td>Lists</td>
</tr>
<tr>
<td>8</td>
<td>Class project</td>
</tr>
<tr>
<td>9</td>
<td>Class presentation</td>
</tr>
</tbody>
</table>
What is wrong with these?

@prefix ex: <http://example.org/> .
ex:Chutney ex:hasIngredient "1 lb green mango",
 "1 tsp. Cayenne pepper" .

@prefix ex: <http://example.org/> .
ex:Chutney ex:ingredient ex:greenMango; ex:amount "1 lb" ;
ex:ingredient ex:CayennePepper; ex:amount "1 tsp." .
It’s a ternary relationship!

```
@prefix ex: <http://example.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
ex:Chutney ex:hasIngredient ex:ingredient1 .
ex:ingredient1 rdf:value ex:greenMango;
ex:amount "1lb" .
```
Table of contents: RDF

1. Motivation
2. Triples and Graphs
3. RDF syntaxes: Turtle and RDF/XML
4. Datatypes
5. n-ary relationships
6. Empty nodes
7. Lists
8. Class project
9. Class presentation
It doesn’t need a name :)
Blank nodes syntax

```
<rdf:Description rdf:about="http://example.org/Chutney">
  <ex:hasIngredient rdf:nodeID="id1" />
</rdf:Description>

<rdf:Description rdf:nodeID="id1">
  <ex:ingredient rdf:resource="http://example.org/greenMango" />
  <ex:amount>1lb</ex:amount>
</rdf:Description>
```

shortcut:

```
<rdf:Description rdf:about="http://example.org/Chutney">
  <ex:hasIngredient rdf:parseType="Resource">
    <ex:ingredient rdf:resource="http://example.org/greenMango" />
    <ex:amount>1lb</ex:amount>
  </ex:hasIngredient>
</rdf:Description>
```
Blank nodes syntax

```xml
<rdf:Description rdf:about="http://example.org/Chutney">
  <ex:hasIngredient rdf:nodeID="id1" />
</rdf:Description>

<rdf:Description rdf:nodeID="id1">
  <ex:ingredient rdf:resource="http://example.org/greenMango" />
  <ex:amount>1lb</ex:amount>
</rdf:Description>

Turtle:

```turtle
@prefix ex: <http://example.org/> .
ex:Chutney ex:hasIngredient _:id1 .
_:id1 ex:ingredient ex:greenMango; ex:amount "1lb" .
```
Blank nodes syntax

@prefix ex: <http://example.org/> .
ex:Chutney ex:hasIngredient _:id1 .
_:id1 ex:ingredient ex:greenMango; ex:amount "1lb" .

shortcut:

@prefix ex: <http://example.org/> .
ex:Chutney ex:hasIngredient
[ ex:ingredient ex:greenMango; ex:amount "1lb" ] .
Table of contents : RDF

1. Motivation
2. Triples and Graphs
3. RDF syntaxes: Turtle and RDF/XML
4. Datatypes
5. n-ary relationships
6. Empty nodes
7. Lists
8. Class project
9. Class presentation
Open lists (containers)

```
<rdf:Description rdf:about="http://semantic-web-book.org/uri">
 <ex:authors>
 <rdf:Seq>
 </rdf:Seq>
 </ex:authors>
</rdf:Description>
```
Types of containers

- “open”: new elements can be added.
  
- `rdf:Seq` – ordered list
- `rdf:Bag` – unordered set
- `rdf:Alt` – set of alternatives

- Lists are actually hardly reflected in the formal semantics (more about this later)
Closed lists (collections)

```xml
<ex:authors rdf:parseType="Collection">
</ex:authors>
</rdf:Description>

book:uri <http://example.org/authors>
```
Closed lists (collections)
Comparison
Table of contents : RDF

1. Motivation
2. Triples and Graphs
3. RDF syntaxes: Turtle and RDF/XML
4. Datatypes
5. n-ary relationships
6. Empty nodes
7. Lists
8. Class project
9. Class presentation
Class project – status

Domains:

- cartoons
- resume/cv
- vehicles
- video games
Class project: next step

- re-check your taxonomy for correctness!
- add ca. 10 instances to your taxonomy

![Taxonomy Diagram]

- add ca. 8 subject-predicate-object triples to your taxonomy, reusing the instances you created, and inventing suitable predicates (RDF properties). Use Turtle syntax for these.
  
  \[
  \text{anne} \quad \text{motherOf} \quad \text{merula}.
  \]

- introduce changes to your ontology in whatever way needed
- document briefly what you have done and why (in particular if you find bugs!
- send to me by Monday 9pm
Table of contents: RDF

1. Motivation
2. Triples and Graphs
3. RDF syntaxes: Turtle and RDF/XML
4. Datatypes
5. n-ary relationships
6. Empty nodes
7. Lists
8. Class project
9. Class presentation
Class presentations

- nothing yet
Class planning (tentative)

Tuesday 10th of January: RDF Schema
Thursday 12th of January: RDF and RDFS Semantics
Tuesday 17th of January: Exercise Session