

Knowledge Representation for the Semantic Web

Winter Quarter 2011

Slides 9 - 02/24/2010

Pascal Hitzler

Kno.e.sis Center Wright State University, Dayton, OH

http://www.knoesis.org/pascal/

Textbook (required)

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph

Foundations of Semantic Web Technologies

Chapman & Hall/CRC, 2010

Choice Magazine Outstanding Academic Title 2010 (one out of seven in Information & Computer Science)

CRC Press

http://www.semantic-web-book.org

Today: Reasoning with OWL

A is a logical consequence of K written K ⊨ A if and only if

every model of K is a model of A.

- To show an entailment, we need to check all models?
- But that's infinitely many!!!

We need algorithms which do not apply the model-based definition of logical consequence in a naive manner.

These algorithms should be syntax-based. (Computers can only do syntax manipulations.)

Luckily, such algorithms exist!

However, their correctness (soundness and completeness) needs to be proven formally. Which is often a non-trivial problem requiring substantial mathematical build-up.

We won't do the proofs here.

Contents

- Important inference problems
- Tableaux algorithm for ALC
- Tableaux algorithm for SHIQ

Important Inference Problems

•	Global consistency of a knowledge base.	KB ⊨ <mark>false</mark> ?
	– Is the knowledge base meaningful?	
•	Class consistency	$C \equiv \perp$?
	– Is C necessarily empty?	
•	Class inclusion (Subsumption)	$C \sqsubseteq D$?
	 Structuring knowledge bases 	
•	Class equivalence	$C \equiv D$?
	– Are two classes in fact the same class?	
•	Class disjointness	C ⊓ D = ⊥?
	– Do they have common members?	
•	Class membership	C(a)?
	– Is a contained in C?	
•	Instance Retrieval "find all x with C(x))"

- Find all (known!) individuals belonging to a given class.

Reduction to Unsatisfiability

•	Global consistency of a knowledge base.	KB unsatisfiable
•	Class consistency	$C \equiv \perp$?
	– KB ∪ {C(a)} unsatisfiable	
•	Class inclusion (Subsumption)	C ⊑ D?
	– KB ∪ {C □ ¬D(a)} unsatisfiable (a new)	
•	Class equivalence	$C \equiv D$?
	$- C \sqsubseteq D und D \sqsubseteq C$	
•	Class disjointness	C ⊓ D = ⊥?
	– KB ∪ {(C □ D)(a)} unsatisfiable (a new)	
•	Class membership	C(a)?
	– KB ∪ {¬C(a)} unsatisfiable	
•	Instance Retrieval "find all x with C(x)"	

- Check class membership for all individuals.

- We will present so-called tableaux algorithms.
- They attempt to construct a model of the knowledge base in a "general, abstract" manner.
 - If the construction fails, then (provably) there is no model –
 i.e. the knowledge base is unsatisfiable.
 - If the construction works, then it is satisfiable.

 \rightarrow Hence the reduction of all inference problems to the checking of unsatisfiability of the knowledge base!

Contents

- Important inference problems
- Tableaux algorithm for ALC
- Tableaux algorithm for SHIQ

ALC tableaux: contents

- Transformation to negation normal form
- Naive tableaux algorithm
- Tableaux algorithm with blocking

Given a knowledge base K.

- Replace $C \equiv D$ by $C \sqsubseteq D$ and $D \sqsubseteq C$.
- Replace $C \sqsubseteq D$ by $\neg C \sqcup D$.
- Apply the equations on the next slide exhaustively.

Resulting knowledge base: NNF(K)

Negation normal form of K.

Negation occurs only directly in front of atomic classes.

NNF(C) = C if C is a class name $NNF(\neg C) = \neg C$ if C is a class name $NNF(\neg \neg C) = NNF(C)$ $NNF(C \sqcup D) = NNF(C) \sqcup NNF(D)$ $NNF(C \sqcap D) = NNF(C) \sqcap NNF(D)$ $NNF(\neg (C \sqcup D)) = NNF(\neg C) \sqcap NNF(\neg D)$ $NNF(\neg (C \sqcap D)) = NNF(\neg C) \sqcup NNF(\neg D)$ $NNF(\forall R.C) = \forall R.NNF(C)$ $NNF(\exists R.C) = \exists R.NNF(C)$ $NNF(\neg \forall R.C) = \exists R.NNF(\neg C)$ $NNF(\neg \exists R.C) = \forall R.NNF(\neg C)$

K and NNF(K) have the same models (are logically equivalent).

Example

$\mathsf{P}\sqsubseteq(\mathsf{E}\sqcap\mathsf{U})\sqcup\neg(\neg\mathsf{E}\sqcup\mathsf{D}).$

In negation normal form:

 $\neg P \sqcup (E \sqcap U) \sqcup (E \sqcap \neg D).$

ALC tableaux: contents

- Transformation to negation normal form
- Naive tableaux algorithm
- Tableaux algorithm with blocking

Reduction to (un)satisfiability.

Idea:

- Given knowledge base K
- Attempt construction of a tree (called *Tableau*), which represents a model of K. (It's actually rather a *Forest*.)
- If attempt fails, K is unsatisfiable.

- Nodes represent elements of the domain of the model

 → Every node x is labeled with a set L(x) of class expressions.
 C ∈ L(x) means: "x is in the extension of C"
- Edges stand for role relationships: → Every edge <x,y> is labeled with a set L(<x,y>) of role names. R ∈ L(<x,y>) means: "(x,y) is in the extension of R"

Simple example

(add ∀R.¬E(a) and show unsatisfiability)

Another example

Formal Definition

- Input: K=TBox + ABox (in NNF)
- Output: Whether or not K is satisfiable.
- A tableau is a directed labeled graph
 - nodes are individuals or (new) variable names
 - nodes x are labeled with sets L(x) of classes
 - edges <x,y> are labeled with sets L(<x,y>) of role names

- Make a node for every individual in the ABox.
- Every node is labeled with the corresponding class names from the ABox.
- There is an edge, labeled with R, between a and b, if R(a,b) is in the ABox.

 (If there is no ABox, the initial tableau consists of a node x with empty label.)

Human ⊑ ∃hasParent.Human Orphan ⊑ Human □ ¬∃hasParent.Alive Orphan(harrypotter) hasParent(harrypotter,jamespotter)

¬Human ⊔ ∃hasParent.Human
¬Orphan ⊔ (Human □ ∀hasParent.¬Alive)
Orphan(harrypotter)
hasParent(harrypotter,jamespotter)

Constructing the tableau

- **Е**.sis
- Non-deterministically extend the tableau using the rules on the next slide.
- Terminate, if
 - there is a contradiction in a node label (i.e., it contains classes C and \neg C, or it contains \perp), or
 - none of the rules is applicable.
- If the tableau does not contain a contradiction, then the knowledge base is satisfiable.
 Or more precisely: If you can make a choice of rule applications such that no contradiction occurs and the process terminates, then the knowledge base is satisfiable.

Naive ALC tableaux rules

 $\sqcap \textbf{-rule: If } C \sqcap D \in \mathcal{L}(x) \text{ and } \{C, D\} \not\subseteq \mathcal{L}(x), \text{ then set } \mathcal{L}(x) \leftarrow \{C, D\}.$

- $\sqcup \textbf{-rule: If } C \sqcup D \in \mathcal{L}(x) \text{ and } \{C, D\} \cap \mathcal{L}(x) = \emptyset, \text{ then set } \mathcal{L}(x) \leftarrow C \text{ or } \mathcal{L}(x) \leftarrow D.$
- \exists -rule: If $\exists R.C \in \mathcal{L}(x)$ and there is no y with $R \in L(x,y)$ and $C \in \mathcal{L}(y)$, then
 - 1. add a new node with label y (where y is a new node label),
 - 2. set $\mathcal{L}(x, y) = \{R\}$, and
 - 3. set $\mathcal{L}(y) = \{C\}.$
- $\forall \textbf{-rule: If } \forall R.C \in \mathcal{L}(x) \text{ and there is a node } y \text{ with } R \in \mathcal{L}(x,y) \text{ and } C \notin \mathcal{L}(y), \\ \text{then set } \mathcal{L}(y) \leftarrow C. \end{cases}$

TBox-rule: If C is a TBox statement and $C \notin \mathcal{L}(x)$, then set $\mathcal{L}(x) \leftarrow C$.

Example

Alive(jamespotter) i.e. add: Alive(jamespotter) and search for contradiction

¬Human ⊔ ∃hasParent.Human

¬Orphan ⊔ (Human ⊓ ∀hasParent.¬Alive)

Orphan(harrypotter)

hasParent(harrypotter,jamespotter)

ALC tableaux: contents

- Transformation to negation normal form
- Naive tableaux algorithm
- Tableaux algorithm with blocking

TBox: ∃**R.**⊤

ABox: \top (a₁)

- Obviously satisfiable: Model M with domain elements a₁^M,a₂^M,... and R^M(a_i^M,a_{i+1}^M) for all i ≥ 1
- but tableaux algorithm does not terminate!

Actually, things repeat! Idea: it is not necessary to expand x, since it's simply a copy of a.

 \Rightarrow Blocking

Blocking

- x is *blocked* (by y) if
 - x is not an individual (but a variable)
 - y is a predecessor of x and $L(x) \subseteq L(y)$
 - or a predecessor of x is blocked

Here, x is blocked by a.

Constructing the tableau

- Non-deterministically extend the tableau using the rules on the next slide, but only apply a rule if x is not blocked!
- Terminate, if
 - there is a contradiction in a node label (i.e., it contains classes C and ¬C), or
 - none of the rules is applicable.
- If the tableau does not contain a contradiction, then the knowledge base is satisfiable.
 Or more precisely: If you can make a choice of rule applications such that no contradiction occurs and the process terminates, then the knowledge base is satisfiable.

Naive ALC tableaux rules

 $\sqcap \textbf{-rule: If } C \sqcap D \in \mathcal{L}(x) \text{ and } \{C, D\} \not\subseteq \mathcal{L}(x), \text{ then set } \mathcal{L}(x) \leftarrow \{C, D\}.$

- $\sqcup \textbf{-rule: If } C \sqcup D \in \mathcal{L}(x) \text{ and } \{C, D\} \cap \mathcal{L}(x) = \emptyset, \text{ then set } \mathcal{L}(x) \leftarrow C \text{ or } \mathcal{L}(x) \leftarrow D.$
- \exists -rule: If $\exists R.C \in \mathcal{L}(x)$ and there is no y with $R \in L(x,y)$ and $C \in \mathcal{L}(y)$, then
 - 1. add a new node with label y (where y is a new node label),
 - 2. set $\mathcal{L}(x, y) = \{R\}$, and
 - 3. set $\mathcal{L}(y) = \{C\}.$
- $\forall \text{-rule: If } \forall R.C \in \mathcal{L}(x) \text{ and there is a node } y \text{ with } R \in \mathcal{L}(x,y) \text{ and } C \notin \mathcal{L}(y), \\ \text{then set } \mathcal{L}(y) \leftarrow C.$

TBox-rule: If C is a TBox statement and $C \notin \mathcal{L}(x)$, then set $\mathcal{L}(x) \leftarrow C$.

Apply only if x is not blocked!

Example (0)

- We want to show that Human(tweety) does not hold, i.e. that ¬Human(tweety) is entailed.
- We will not be able to show this. I.e. Human(tweety) is *possible*.
- Shorter notation:
 H ⊑ ∃p.H
 B(t)

 \neg H(t) entailed?

Example (0)

Knowledge base {¬H ⊔ ∃p.H, B(t), H(t)}

expansion stops. Cannot find contradiction!

Example (0) the other case

Knowledge base {¬H ⊔ ∃p.H, B(t), ¬H(t)}

no further expansion possible – knowledge base is satisfiable!

Example(1)

Show, that Professor ⊑ (Person ⊓ Unversitymember) ⊔ (Person ⊓ ¬PhDstudent)

entails that every Professor is a Person.

Find contradiction in: $\neg P \sqcup (E \sqcap U) \sqcup (E \sqcap \neg S)$ $P \sqcap \neg E(x)$

$$P \square \neg E$$

$$P \square \neg E$$

$$\neg E$$

$$\neg P \sqcup (E \sqcap U) \sqcup (E \sqcap \neg S)$$

$$1. \neg P (contradiction)$$

$$2. (E \sqcap U) \sqcup (E \sqcap \neg S)$$

$$1. E \sqcap U$$

$$E (contradiction)$$

$$2. E \sqcap \neg S$$

$$E (contradiction)$$

Example (2)

Show that hasChild(john, peter) hasChild(john, paul) male(peter) male(paul) does *not* entail ∀hasChild.male(john).

 $\neg \forall hasChild.male \equiv \exists hasChild. \neg male$

Example (3)

Show that the knowledge base Bird ⊑ Flies Penguin ⊑ Bird Penguin ⊓ Flies ⊑ ⊥ Penguin(tweety)

is unsatisfiable.

Show that the knowledge baseC(a)C(c)R(a,b)R(a,c)S(a,a)S(c,b) $C \sqsubseteq \forall S.A$ S(c,b) $A \sqsubseteq \exists R.\exists S.A$ $A \sqsubseteq \exists R.C$

entails $\exists R. \exists R. \exists S. A(a).$

Example (4)

$\neg \exists R. \exists R. \exists S. A \equiv \forall R. \forall R. \forall S. \neg A$

Contents

- Important inference problems
- Tableaux algorithm for ALC
- Tableaux algorithm for SHIQ

Tableaux Algorithm for SHIQ

- Basic idea is the same.
- Blocking rule is more complicated
- Other modifictions are also needed.

Given a knowledge base K.

- Replace $C \equiv D$ by $C \sqsubseteq D$ and $D \sqsubseteq C$.
- Replace $C \sqsubseteq D$ by $\neg C \sqcup D$.
- Apply the equations on the next slide exhaustively.

Resulting knowledge base: NNF(K)

Negation normal form of K.

Negation occurs only directly in front of atomic classes.

K and NNF(K) have the same models (are *logically equivalent*).

NNF(C) = C if C is a class name $NNF(\neg C) = \neg C$ if C is a class name $NNF(\neg \neg C) = NNF(C)$ $NNF(C \sqcup D) = NNF(C) \sqcup NNF(D)$ $NNF(C \sqcap D) = NNF(C) \sqcap NNF(D)$ $NNF(\neg (C \sqcup D)) = NNF(\neg C) \sqcap NNF(\neg D)$ $NNF(\neg (C \sqcap D)) = NNF(\neg C) \sqcup NNF(\neg D)$ $NNF(\forall R.C) = \forall R.NNF(C)$ $NNF(\exists R.C) = \exists R.NNF(C)$ $NNF(\neg \forall R.C) = \exists R.NNF(\neg C)$ $NNF(\neg \exists R.C) = \forall R.NNF(\neg C)$

NNF(\leq n R.C) NNF(\geq n R.C) NNF($\neg \leq n R.C$) NNF($\neg \ge n R.C$)

 $= \ge n R.NNF(C)$

 $= \geq (n+1)R.NNF(C)$

= \leq (n-1)R.NNF(C), where \leq (-1)R.C = \perp

- $= \leq n R.NNF(C)$

Formal Definition

- A tableau is a directed labeled graph
 - nodes are individuals or (new) variable names
 - nodes x are labeled with sets L(x) of classes
 - edges <x,y> are labeled
 - either with sets L(<x,y>) of role names or inverse role names
 - or with the symbol = (for equality)
 - or with the symbol ≠ (for inequality)

Initialisation

- Make a node for every individual in the ABox. These nodes are called *root nodes*.
- Every node is labeled with the corresponding class names from the ABox.
- There is an edge, labeled with R, between a and b, if R(a,b) is in the ABox.
- There is an edge, labeled ≠, between a and b if a ≠ b is in the ABox.
- There are no = relations (yet).

Notions

- We write S⁻⁻ as S.
- If $R \in L(\langle x, y \rangle)$ and $R \sqsubseteq S$ (where R,S can be inverse roles), then
 - y is an S-successor of x and
 - x is an S-predecessor of y.
- If y is an S-successor or an S⁻-predecessor of x, then y is an neighbor of x.
- Ancestor is the transitive closure of Predecessor.

Blocking for SHIQ

- x is *blocked* by y if x,y are not root nodes and
 - the following hold: ["x is directly blocked"]
 - no ancestor of x is blocked
 - there are predecessors y', x' of x
 - y is a successor of y' and x is a successor of x'
 - L(x) = L(y) and L(x') = L(y')
 - L(<x',x>) = L(<y',y>)
 - or the following holds: ["x is indirectly blocked"]
 - an ancestor of x is blocked or
 - x is successor of some y with $L(\langle y, x \rangle) = \emptyset$

Constructing the tableau

- € кпо.€.sis
- Non-deterministically extend the tableau using the rules on the next slide.
- Terminate, if
 - there is a contradiction in a node label, i.e.,
 - it contains \perp or classes C and \neg C or
 - it contains a class ≤ nR.C and x also has (n+1) R-successors y_i and y_i≠ y_i (for all i ≠ j)
 - or none of the rules is applicable.
- If the tableau does not contain a contradiction, then the knowledge base is satisfiable.
 Or more precisely: If you can make a choice of rule applications such that no contradiction occurs and the process terminates, then the knowledge base is satisfiable.

SHIQ Tableaux Rules

- $\sqcap \textbf{-rule: If } x \text{ is not indirectly blocked}, \ C \sqcap D \in \mathcal{L}(x), \text{ and } \{C, D\} \not\subseteq \mathcal{L}(x), \text{ then set } \mathcal{L}(x) \leftarrow \{C, D\}.$
- $\Box \text{-rule: If } x \text{ is not indirectly blocked, } C \sqcup D \in \mathcal{L}(x) \text{ and } \{C, D\} \sqcap \mathcal{L}(x) = \emptyset, \\ \text{then set } \mathcal{L}(x) \leftarrow C \text{ or } \mathcal{L}(x) \leftarrow D.$
 - \exists -rule: If x is not blocked, $\exists R.C \in \mathcal{L}(x)$, and there is no y with $R \in \mathcal{L}(x, y)$ and $C \in \mathcal{L}(y)$, then
 - 1. add a new node with label y (where y is a new node label),
 - 2. set $\mathcal{L}(x, y) = \{R\}$ and $\mathcal{L}(y) = \{C\}$.
- \forall -rule: If x is not indirectly blocked, $\forall R.C \in \mathcal{L}(x)$, and there is a node y with $R \in \mathcal{L}(x, y)$ and $C \notin \mathcal{L}(y)$, then set $\mathcal{L}(y) \leftarrow C$.
- **TBox-rule:** If x is not indirectly blocked, C is a TBox statement, and $C \notin \mathcal{L}(x)$, then set $\mathcal{L}(x) \leftarrow C$.

- **trans-rule:** If x is not indirectly blocked, $\forall S.C \in \mathcal{L}(x)$, S has a transitive subrole R, and x has an R-neighbor y with $\forall R.C \notin \mathcal{L}(y)$, then set $\mathcal{L}(y) \leftarrow \forall R.C$.
- **choose-rule:** If x is not indirectly blocked, $\leq nS.C \in \mathcal{L}(x)$ or $\geq nS.C \in \mathcal{L}(x)$, and there is an S-neighbor y of x with $\{C, \text{NNF}(\neg C)\} \cap \mathcal{L}(y) = \emptyset$, then set $\mathcal{L}(y) \leftarrow C$ or $\mathcal{L}(y) \leftarrow \text{NNF}(\neg C)$.
- \geq -rule: If x is not blocked, $\geq nS.C \in \mathcal{L}(x)$, and there are no n S-neighbors y_1, \ldots, y_n of x with $C \in \mathcal{L}(y_i)$ and $y_i \not\approx y_j$ for $i, j \in \{1, \ldots, n\}$ and $i \neq j$, then
 - 1. create n new nodes with labels y_1, \ldots, y_n (where the labels are new),
 - 2. set $\mathcal{L}(x, y_i) = \{S\}, \mathcal{L}(y_i) = \{C\}, \text{ and } y_i \not\approx y_j \text{ for all } i, j \in \{1, \ldots, n\} \text{ with } i \neq j.$

 \leq -rule: If x is not indirectly blocked, $\leq nS.C \in \mathcal{L}(x)$, there are more than n S-neighbors y_i of x with $C \in \mathcal{L}(y_i)$, and x has two S-neighbors y, z such that y is neither a root node nor an ancestor of $z, y \not\approx z$ does not hold, and $C \in \mathcal{L}(y) \cap \mathcal{L}(z)$, then

1. set $\mathcal{L}(z) \leftarrow \mathcal{L}(y)$,

2. if z is an ancestor of x, then $\mathcal{L}(z,x) \leftarrow {\text{Inv}(R) \mid R \in \mathcal{L}(x,y)},$

3. if z is not an ancestor of x, then $\mathcal{L}(x, z) \leftarrow \mathcal{L}(x, y)$,

4. set $\mathcal{L}(x,y) = \emptyset$, and

5. set $u \not\approx z$ for all u with $u \not\approx y$.

 \leq -root-rule: If $\leq nS.C \in \mathcal{L}(x)$, there are more than *n* S-neighbors y_i of x with $C \in \mathcal{L}(y_i)$, and x has two S-neighbors y, z which are both root nodes, $y \not\approx z$ does not hold, and $C \in \mathcal{L}(y) \cap \mathcal{L}(z)$, then

1. set $\mathcal{L}(z) \leftarrow \mathcal{L}(y)$,

for all directed edges from y to some w, set L(z, w) ← L(y, w),
 for all directed edges from some w to y, set L(w, z) ← L(w, y),
 set L(y) = L(w, y) = L(y, w) = Ø for all w,
 set u ≈ z for all u with u ≈ y, and
 set y ≈ z.

Example (1): cardinalities

Show, that hasChild(john, peter) hasChild(john, paul) male(peter) male(paul) ≤2hasChild.⊤(john) does *not* entail ∀hasChild.male(john).

Example (1): cardinalities

Show, that hasChild(john, peter) hasChild(john, paul) male(peter) male(paul) ≤2hasChild.⊤(john) does *not* entail ∀hasChild.male(john).

 $\neg \forall$ hasChild.male = \exists hasChild. \neg male

Example (1): cardinalities – again

Show, that hasChild(john, peter) hasChild(john, paul) male(peter) male(paul) ≤2hasChild.⊤(john) and peter ≠ paul does not entail ∀hasChild.male(john).

Example (2): cardinalities

Show, that ≥2hasSon.⊤(john) entails ≥2hasChild.⊤(john). $\neg \geq 2hasSon. \top \equiv \leq 1hasChild. \top$

hasSon ⊑ hasChild

hasSon-neighbors are also hasChild-neighbors, tableau terminates with contradiction

≥3hasSon(john)
≤2hasSon.male(john)
Is this contradictory?

No, because the following tableau is complete.

∃hasChild.human(john) human ⊑ ∀hasParent.human hasChild ⊑ hasParent⁻ zu zeigen: human(john)

john is hP -predecessor of x, hence hP-neighbor of x

Example (5): Transitivity and Blocking

human $\sqsubseteq \exists$ hasFather. \top human $\sqsubseteq \forall$ hasAncestor.human hasFather \sqsubseteq hasAncestor Trans(hasAncestor) human(john)

Does this entail \leq 1hasFather. \top (john)? Negation: \geq 2hasFather. \top (john)

Example (5): Transitivity and Blocking

human ⊑ ∃hasFather.⊤ hasFather ⊑ hasAncestor ∀hasAncestor.human(john) human(john)

Trans(hasAncestor)

```
≥2hasFather.⊤(john)
```


same as branch above

 $\neg C \sqcap (\leq 1F) \sqcap \exists F.D \sqcap \forall R.(\exists F.D), where$ $D = C \sqcap (\leq 1F) \sqcap \exists F.\neg C, Trans(R), and F \sqsubseteq R,$ is not satisfiable.

Without pairwise blocking, z would be blocked, which shouldn't happen: Expansion of $\exists F. \neg C$ yields $\neg C$ for node y as required.

€ кпо.€.sis

A □ ∃S.(∃R.⊤ □ ∃P.⊤ □ ∀R.C □∀P.(∃R.⊤) □ ∀P.(∀R.C) □ ∀P.(∃P.⊤)) with C = ∀R⁻.(∀P⁻.(∀S⁻.¬A)) and Trans(P), is not satisfiable. Part of the tableau:

At this stage, z would be blocked by y (assuming the presence of another pair). However, when C from v is expanded, z becomes unblocked, which is necessary in order to label w with C which in turn labels x with $\neg A$, yielding the required contradiction.

Tableaux Reasoners

- Fact++
 - http://owl.man.ac.uk/factplusplus/
- Pellet
 - http://www.mindswap.org/2003/pellet/index.shtml
- RacerPro
 - http://www.sts.tu-harburg.de/~r.f.moeller/racer/

