

Semantic Web Modelling Languages (Part 2)

Tutorial at IJCAI-09 July 13, 2009

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Research University · founded 1825

... actually moving to Wright State University, Dayton, OH, Sept. 2009

Pascal Hitzler

Markus Krötzsch

Sebastian Rudolph

AIFB, Universität Karlsruhe (TH) Germany

http://www.pascal-hitzler.de http://korrekt.org http://www.sebastian-rudolph.de

www.kit.edu

Full set of slides available from

http://semantic-web-grundlagen.de/wiki/IJCAI-09_Tutorial

Universität Karlsruhe (TH) Research University · founded 1825

OWL – Overview

Web Ontology Language

- W3C Recommendation for the Semantic Web, 2004
- OWL 2 (revised W3C Recommendation) forthcoming in 2009
 we already present this here

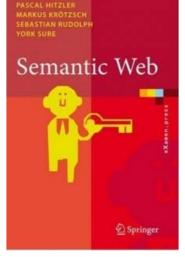
Semantic Web KR language based on description logics (DLs)

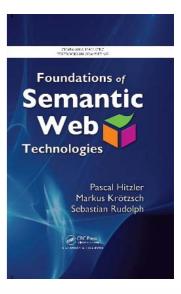
- OWL DL is essentially DL SROIQ(D)
- KR for web resources, using URIs.
- Using web-enabled syntaxes, e.g. based on XML or RDF. We present
 - DL syntax (used in research not part of the W3C recommendation)
 - (some) RDF Turtle syntax

3

References

- W3C OWL Working Group, OWL 2 Web Ontology Language: Document Overview. http://www.w3.org/TR/owl2-overview/
- Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter Patel-Schneider, Sebastian Rudolph, OWL 2 Web Ontology Language: Primer. http://www.w3.org/TR/owl2-primer/


Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, Peter F. Patel-Schneider, The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, 2nd edition, 2007.


References – Textbooks

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, York Sure, Semantic Web – Grundlagen. Springer, 2008. http://www.semantic-web-grundlagen.de/ (In German)

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, Foundations of Semantic Web Technologies. Chapman & Hall/CRC, 2009. http://www.semantic-web-book.org/wiki/FOST (Ask for a flyer from us)

Contents

- OWL Basic Ideas
- OWL As the Description Logic SROIQ(D)
- Different Perspectives on OWL
- Expressivity Examples: Rules in OWL
- OWL Semantics
- OWL Profiles
- Proof Theory
- Tools
- Outlook
- References

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Contents

OWL – Basic Ideas

- OWL As the Description Logic SROIQ(D)
- Different Perspectives on OWL
- Expressivity Examples: Rules in OWL
- OWL Semantics
- OWL Profiles
- Proof Theory
- Tools
- Outlook
- References

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Rationale behind OWL

- Open World Assumption
- Favourable trade-off between expressivity and scalability
- Integrates with RDFS
- Purely declarative semantics

Features:

- Fragment of first-order predicate logic (FOL)
- Decidable
- Known complexity classes (N2ExpTime for OWL 2 DL)
- Reasonably efficient for real KBs

OWL Building Blocks

- individuals (written as URIs)
 - also: constants (FOL), ressources (RDF)
 - http://example.org/sebastianRudolph
 - http://www.semantic-web-book.org
 - we write these lowercase and abbreviated, e.g. "sebastianRudolph"
- classes (also written as URIs!)
 - also: concepts, unary predicates (FOL)
 - we write these uppercase, e.g. "Father"
- properties (also written as URIs!)
 - also: roles (DL), binary predicates (FOL)
 - we write these lowercase, e.g. "hasDaughter"

DL syntax

FOL syntax

Person(mary)

- Woman ⊑ Person
 Person ≡ HumanBeing
- hasWife(john,mary)

- $\forall x (Woman(x) \rightarrow Person(x))$
- hasWife(john,mary)
- hasWife ⊑ hasSpouse ∀x ∀y (hasWife(x,y)→ hasSpouse(x,y))
 hasSpouse ≡ marriedWith

TBox statements

DL syntax

RDFS syntax

Person(mary)
Imary rdf:type
:Person.

- Woman ⊑ Person
 Woman rdfs:subClassOf :Person .
 Person ≡ HumanBeing
- hasWife(john,mary)
 ight is interval and interva
- hasWife
 hasSpouse
 ihasWife rdfs:subPropertyOf :hasSpouse .
 hasSpouse
 marriedWith

Special classes and properties

owl:Thing (RDF syntax)

- DL-syntax: T
- contains everything

owl:Nothing (RDF syntax)

- DL-syntax: ⊥
- empty class
- owl:topProperty (RDF syntax)
 - DL-syntax: U
 - every pair is in U
- owl:bottomProperty (RDF syntax)
 - empty property

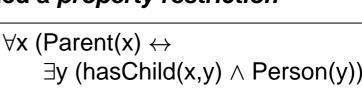
13

Class constructors

 Conjunction Mother ≡ Woman ⊓ Parent Mother owl:equivalentClass _:x . _:x rdf:type owl:Class . _:x owl:intersectionOf (:Woman :Parent). 	
 disjunction Parent ≡ Mother ⊔ Father Parent owl:equivalentClass _:x . 	
 ChildlessPerson ≡ Person □ ¬Parent :ChildlessPerson owl:equivalentClass _:x . _:x rdf:type owl:Class . _:x owl:intersectionOf (:Person _:y) . _:y owl:complementOf :Parent . 	

14

Class constructors can be nested arbitrarily


Class constructors

existential quantification

- only to be used with a role also called a property restriction
- Parent ≡ ∃hasChild.Person
- Parent owl:equivalentClass _:x.
 - _:x rdf:type owl:Restriction .
 - _:x owl:onProperty :hasChild .
 - _:x owl:someValuesFrom :Person .
- universal quantification
 - only to be used with a role also called a property restriction
 - Person □ Happy ≡ ∀hasChild.Happy
 - _:x rdf:type owl:Class .
 - _:x owl:intersectionOf (:Person :Happy) .
 - _:x owl:equivalentClass _:y .
 - _:y rdf:type owl:Restriction .
 - _:y owl:onProperty :hasChild .
 - _:y owl:allValuesFrom :Happy .

/x (Person(x) ∧ Happy(x) ↔

$$\forall x (Person(x) \land Happy(x) \leftrightarrow \forall y (hasChild(x,y) \rightarrow Happy(y))$$

Contents

- OWL Basic Ideas
- OWL As the Description Logic SROIQ(D)
- Different Perspectives on OWL
- Expressivity Examples: Rules in OWL
- OWL Semantics
- OWL Profiles
- Proof Theory
- Tools
- Outlook
- References

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

The description logic ALC

- **ABox expressions: Individual assignments Property assignments**
- **TBox expressions** subclass relationships
 - conjunction Π disjunction negation

property restrictions


Complexity: ExpTime

Father(john) hasWife(john,mary)

A

F

Also: \top , \bot

ALC + role chains = SR

hasParent o hasBrother
hasUncle

:hasUncle owl:propertyChainAxiom (:hasParent :hasBrother).

 $\forall x \ \forall y \ (\exists z \ ((hasParent(x,z) \land hasBrother(z,y)) \rightarrow hasUncle(x,y)))$

includes top property and bottom property

includes S = ALC + transitivity

hasAncestor o hasAncestor
hasAncestor

- includes SH = S + role hierarchies
 - hasFather <a>L hasParent

I'll skip RDF syntax in the following.

O – nominals (closed classes)

- MyBirthdayGuests ≡{bill,john,mary}
- Note the difference to MyBirthdayGuests(bill)
 MyBirthdayGuests(john)
 MyBirthdayGuests(mary)

Individual equality and inequality (no unique name assumption!)

- bill = john
 - {bill} ≡ {john}
- bill ≠ john
 - [bill] □ {john} ≡⊥

I – inverse roles

- hasParent ≡hasChild
- Orphan ≡ ∀hasChild .Dead
- Q qualified cardinality restrictions
 - ≤4 hasChild.Parent(john)
 - HappyFather $\equiv \geq 2$ hasChild.Female
 - Car <u></u>=4hasTyre.⊤
- Complexity SHIQ, SHOQ, SHIO: ExpTime. Complexity SHOIQ: NExpTime Complexity SROIQ: N2ExpTime

Properties can be declared to be

- Transitive hasAncestor
- Symmetric hasSpouse
- Asymmetric hasChild
- Reflexive hasRelative
- Irreflexive parentOf
- Functional hasHusband
- InverseFunctional hasHusband

called property characteristics

(D) – datatypes

- so far, we have only seen properties with individuals in second argument, called object properties or abstract roles (DL)
- properties with datatype literals in second argument are called data properties or concrete roles (DL)
- allowed are many XML Schema datatypes, including xsd:integer, xsd:string, xsd:float, xsd:booelan, xsd:anyURI, xsd:dateTime

and also e.g. owl:real

orschungszentrum Karlsruhe

(D) – datatypes

hasAge(john, "51"^^xsd:integer)

additional use of constraining facets (from XML Schema)

e.g. Teenager ≡ Person □ ∃hasAge.(xsd:integer: ≥12 and ≤19) note: this is not standard DL notation!

further expressive features

Self

- PersonCommittingSuicide ≡ ∃kills.Self
- Keys (not really in SROIQ(D), but in OWL)
 - set of (object or data) properties whose values uniquely identify an object
- disjoint properties
 - Disjoint(hasParent,hasChild)
- explicit anonymous individuals
 - as in RDF: can be used instead of named individuals

SROIQ(D) constructors – overview

- ABox assignments of individuals to classes or properties
- ALC: ⊑, ≡for classes □, ⊔, ¬, ∃, ∀ ⊤. ⊥
- SR: + property chains, property characteristics, role hierarchies
- SRO: + nominals {o}
- SROI: + inverse properties
 - + qualified cardinality constraints
- SROIQ(D): + datatypes (including facets)
- + top and bottom roles (for objects and datatypes)
- + disjoint properties
- + Self

SROIQ:

+ Keys (not in SROIQ(D), but in OWL)

Some Syntactic Sugar in OWL

This applies to the non-DL syntaxes (e.g. RDF syntax).

- disjoint classes
 - Apple \sqcap Pear $\sqsubseteq \bot$
- disjoint union
 - Parent ≡ Mother ⊔ Father Mother □ Father ⊑ ⊥
- negative property assignments (also for datatypes)
 - ¬hasAge(jack,"53"^^xsd:integer)

Contents

- OWL Basic Ideas
- OWL As the Description Logic SROIQ(D)
- Different Perspectives on OWL
- Expressivity Examples: Rules in OWL
- OWL Semantics
- OWL Profiles
- Proof Theory
- Tools
- Outlook
- References

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

OWL – Extralogical Features

- OWL ontologies have URIs and can be referenced by others via
 - import statements
- Namespace declarations
- Entity declarations (must be done)
- Versioning information etc.

Annotations

- Entities and axioms (statements) can be endowed with annotations, e.g. using rdfs:comment.
- OWL syntax provides annotation properties for this purpose.

The modal logic perspective

- Description logics can be understood from a modal logic perspective.
- Each pair of ∀R and ∃R statements give rise to a pair of modalities.
- Essentially, some description logics are multi-modal logics.

See [The Description Logic Handbook].

The RDFS perspective

RDFS semantics is weaker

- :mary rdf:type :Person .
- :Mother rdfs:subClassOf :Woman .
- :john :hasWife :Mary .
- :hasWife rdfs:subPropertyOf :hasSpouse
- :hasWife rdfs:range :Woman .
- :hasWife rdfs:domain :Man .

Person(mary)

- Mother **⊑** Woman
- hasWife(john,mary)
- hasWife ⊑ hasSpouse

- ⊤ ⊏ ∀hasWife.Woman
- $\top \sqsubset \forall hasWife$.Man or ∃hasWife.⊤ ⊏ Man

RDFS also allows to

- make statements about statements
 - \rightarrow only possible through annotations in OWL
- mix class names, individual names, property names (they are all URIs) \rightarrow *punning* in OWL

Punning

- Description logics impose type separation, i.e. names of individuals, classes, and properties must be disjoint.
- In OWL 2 Full, type separation does not apply.
- In OWL 2 DL, type separation is relaxed, but a class X and an individual X are interpreted semantically as if they were different.
- Father(john) SocialRole(Father)
- See further below on the two different semantics for OWL.

Contents

- OWL Basic Ideas
- OWL As the Description Logic SROIQ(D)
- Different Perspectives on OWL
- Expressivity Examples: Rules in OWL
- OWL Semantics
- OWL Profiles
- Proof Theory
- Tools
- Outlook
- References

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Expressivity Examples: Rules in OWL

Man(x) \land hasBrother(x,y) \land hasChild(y,z) \rightarrow Uncle(x)

Man □ ∃hasBrother.∃hasChild.⊤ ⊑ Uncle

- kills(x,x) \rightarrow suicide(x)
 - ∃kills.Self ⊑ suicide

suicide(x) \rightarrow kills(x,x) suicide $\sqsubseteq \exists$ kills.Self

Note: with these two axioms,

suicide is basically the same as kills

orschungszentrum Karlsruhe

NutAllergic(x) ∧ NutProduct(y) → dislikes(x,y)

NutAllergic ≡ ∃nutAllergic.Self NutProduct ≡ ∃nutProduct.Self nutAllergic o U o nutProduct ⊑ dislikes

Expressivity Examples: Rules in OWL

- dislikes(x,z) ∧ Dish(y) ∧ contains(y,z) → dislikes(x,y)
 - Dish ≡ ∃dish.Self dislikes o contains o dish ⊑ dislikes
- worksAt(x,y) ∧ University(y) ∧ supervises(x,z) ∧ PhDStudent(z) → professorOf(x,z)
 - ∃worksAt.University ≡ ∃worksAtUniversity.Self PhDStudent ≡ ∃phDStudent.Self worksAtUniversity o supervises o phDStudent ⊑ professorOf
- Basic requirement for expressibility of rules in OWL 2: tree-shapedness of rule bodies
- For more on this, see [Description Logic Rules] and [ELP].

Contents

- OWL Basic Ideas
- OWL As the Description Logic SROIQ(D)
- Different Perspectives on OWL
- Expressivity Examples: Rules in OWL
- OWL Semantics
- OWL Profiles
- Proof Theory
- Tools
- Outlook
- References

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

OWL Semantics

There are two semantics for OWL.

- 1. Description Logic Semantics also: Direct Semantics; FOL Semantics Can be obtained by translation to FOL. Syntax restrictions apply! (see next slide)
- RDF-based Semantics
 No syntax restrictions apply.
 Extends the direct semantics with RDFS-reasoning features.

In the following, we will deal with the direct semantics only.

OWL Direct Semantics

To obtain decidability, syntactic restrictions apply.

- Type separation / punning
- No cycles in property chains.
- No transitive properties in cardinality restrictions.

OWL Direct Semantics: Restrictions

- arbitrary property chain axioms lead to undecidability
- restriction: set of property chain axioms has to be regular
 - there must be a strict linear order < on the properties</p>
 - every property chain axiom has to have one of the following forms:

 R o R \sqsubseteq R
 S⁻ \sqsubseteq R
 S₁ o S₂ o ... o S_n \sqsubseteq R

 R o S₁ o S₂ o ... o S_n \sqsubseteq R
 S₁ o S₂ o ... o S_n o S_n \sqsubset R

thereby, S_i < R for all i= 1, 2, ..., n.</p>

Example 1: $R \circ S \sqsubseteq R$ $S \circ S \sqsubseteq S$ $R \circ S \circ R \sqsubseteq T$

 \rightarrow regular with order S < R < T

Example 2: $R \circ T \circ S \sqsubseteq T$

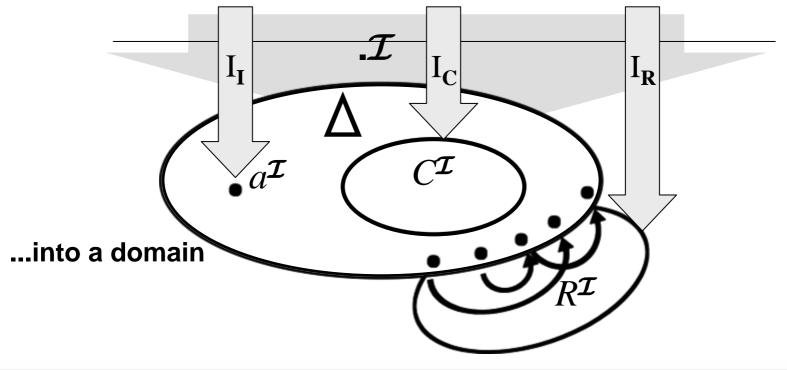
 \rightarrow not regular because form not admissible

Example 3: $R \circ S \sqsubseteq S \circ R \sqsubseteq R$

 \rightarrow not regular because no adequate order exists

OWL Direct Semantics: Restrictions

- combining property chain axioms and cardinality constraints may lead to undecidability
- restriction: use only *simple* properties in cardinality expressions (i.e. those which cannot be – directly or indirectly – inferred from property chains)
- technically:
 - for any property chain axiom S₁ o S₂ o ... o S_n ⊑ R with n>1, R is non-simple
 - for any subproperty axiom S
 R with S non-simple, R is non-simple
 - all other properties are simple
- **Example:** $Q \circ P \sqsubseteq R$ $R \circ P \sqsubseteq R$ $R \sqsubseteq S$ $P \sqsubseteq R$ $Q \sqsubseteq S$ non-simple: R, S simple: P, Q



OWL Direct Semantics

- model-theoretic semantics
- starts with interpretations
- an interpretation maps

individual names, class names and property names...

OWL Direct Semantics

mapping is extended to complex class expressions:

$$\top^{\mathsf{I}} = \triangle^{\mathsf{I}} \qquad \qquad \bot^{\mathsf{I}} = \emptyset$$

$$(C \sqcap D)^{i} = C^{i} \cap D^{i} \qquad (C \sqcup D)^{i} = C^{i} \cup D^{i} (\neg C)^{i} = \triangle^{i} \setminus C^{i}$$

■
$$\forall R.C = \{ x \mid \forall (x,y) \in R^{I} \rightarrow y \in C^{I} \}$$

 $\exists R.C = \{ x \mid \exists (x,y) \in R^{I} \land y \in C^{I} \}$

■ \geq nR.C = { x | #{ y | (x,y) ∈ Rⁱ ∧ y ∈ Cⁱ} \geq n }

■
$$\leq$$
nR.C = { x | #{ y | (x,y) ∈ R^I ∧ y ∈ C^I} \leq n }

...and to role expressions:

$$U^{I} = \triangle^{I} \times \triangle^{I} \qquad (R^{-})^{I} = \{ (y,x) \mid (x,y) \in R^{I} \}$$

...and to axioms:

C(a) holds, if a^l ∈ C^l

R(a,b) holds, if $(a^i,b^i) \in R^i$

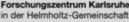
orschungszentrum Karlsruhe

• $C \sqsubseteq D$ holds, if $C^{I} \subseteq D^{I}$ $R \sqsubseteq S$ holds, if $R^{I} \subseteq S^{I}$

Dis(R,S) holds if $R^{I} \cap S^{I} = \emptyset$

S₁ o S₂ o ... o S_n \sqsubseteq R holds if S₁ o S₂ o ... o S_n \subseteq R

OWL Direct Semantics via FOL



but often OWL 2 DL is said to be a fragment of FOL (with equality)...

yes, there is a translation of OWL 2 DL into FOL

$$\begin{split} \pi(C \sqsubseteq D) &= (\forall x)(\pi_x(C) \to \pi_x(D)) \\ \pi_x(A) &= A(x) \\ \pi_x(-C) &= \neg \pi_x(C) \\ \pi_x(C \sqcap D) &= \pi_x(C) \land \pi_x(D) \\ \pi_x(C \sqcup D) &= \pi_x(C) \lor \pi_x(D) \\ \pi_x(\forall R.C) &= (\forall x_1)(R(x,x_1) \to \pi_{x_1}(C)) \\ \pi_x(\exists R.C) &= (\exists x_1) \dots (\exists x_n) \left(\bigwedge_{i \neq j} (x_i \neq x_j) \land \bigwedge_i (S(x,x_i) \land \pi_{x_i}(C)) \right) \\ \pi_x(\leq nS.C) &= (\neg \exists x_1) \dots (\exists x_{n+1}) \left(\bigwedge_{i \neq j} (x_i \neq x_j) \land \bigwedge_i (S(x,x_i) \land \pi_{x_i}(C)) \right) \\ \pi_x(\exists A) &= (x = a) \\ \pi_x(\exists S.Self) &= S(x, x) \end{split}$$

I ...which (interpreted under FOL semantics) coincides with the definition just given.

Contents

- OWL Basic Ideas
- OWL As the Description Logic SROIQ(D)
- Different Perspectives on OWL
- Expressivity Examples: Rules in OWL
- OWL Semantics
- OWL Profiles
- Proof Theory
- Tools
- Outlook
- References

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

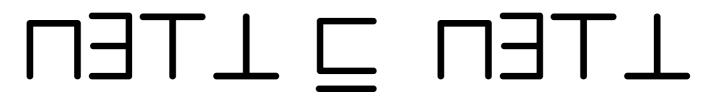
OWL Profiles

OWL Full – using the RDFS-based semantics

OWL DL – using the FOL semantics

The OWL 2 documents describe further profiles, which are of polynomial complexity:

OWL EL (EL++)
 OWL QL (DL Lite_R)
 OWL RL (DLP)



OWL 2 EL

allowed:

- subclass axioms with intersection, existential quantification, top, bottom
 - closed classs must have only one member
- property chain axioms, range restrictions (under certain conditions)
- disallowed:
 - negation, disjunction, arbitrary universal quantification, role inverses

Examples: \exists has.Sorrow $\sqsubseteq \exists$ has.Liqueur; $\top \sqsubseteq \exists$ hasParent.Person \exists married. $\top \sqcap$ CatholicPriest $\sqsubseteq \bot$; German $\sqsubseteq \exists$ knows.{angela}; hasParent ± hasParent \sqsubseteq hasGrandparent

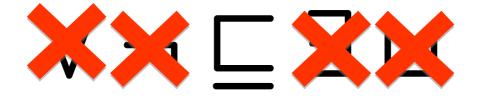
OWL 2 RL

- motivated by the question: what fraction of OWL 2 DL can be expressed naively by rules (with equality)?
- examples:
 - ∃parentOf.∃parentOf.⊤ ⊑ Grandfather rule version: parentOf(x,y) ∧ parentOf(y,z) → Grandfather(x)
 - Orphan ⊑ ∀hasParent.Dead rule version: Orphan(x) ∧ hasParent(x,y) → Dead(y)

■ Monogamous <u></u> ≤1married.Alive

rule version: Monogamous(x) \land married(x,y) \land Alive(y) \land married(x,z) \land Alive(z) \rightarrow y=z

- ChildOf ± childOf ⊑ grandchildOf rule version: childOf(x,y) ∧ childOf(y,z) → grandchildOf(x,z)
- Disj(childOf,parentOf) rule version: childOf(x,y) ∧ parentOf(x,y) →



OWL 2 RL

syntactic characterization:

- essentially, all axiom types are allowed
- disallow certain constructors on lhs and rhs of subclass statements

- cardinality restrictions: only on rhs and only ≤ 1 and ≤ 0 allowed
- closed classes: only with one member
- Reasoner conformance requires only soundness.

OWL 2 QL

- motivated by the question: what fraction of OWL 2 DL can be captured by standard database technology?
- formally: query answering LOGSPACE w.r.t. data (via translation into SQL)

allowed:

- subproperties, domain, range
- subclass statements with
 - left hand side: class name or expression of type $\exists r. \top$
 - right hand side: intersection of class names, expressions of type ∃r.C and negations of lhs expressions
 - no closed classes!

Example:

 \exists married. $\top \sqsubseteq \neg$ Free $\sqcap \exists$ has.Sorrow

Contents

- OWL Basic Ideas
- OWL As the Description Logic SROIQ(D)
- Different Perspectives on OWL
- Expressivity Examples: Rules in OWL
- OWL Semantics
- OWL Profiles
- Proof Theory
- Tools
- Outlook
- References

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Proof Theory

Traditionally using tableaux algorithms (see below)

Alternatives:

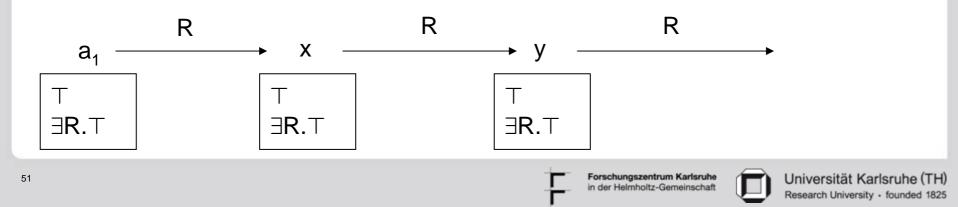
- Transformation to disjunctive datalog using basic superposition done for SHIQ
- Naive mapping to Datalog for OWL RL
- Mapping to SQL for OWL QL
- Special-purpose algorithms for OWL EL e.g. transformation to Datalog

Proof theory Via Tableaux

Adaptation of FOL tableaux algorithms.

Problem: OWL is decidable, but FOL tableaux algorithms do not guarantee termination.

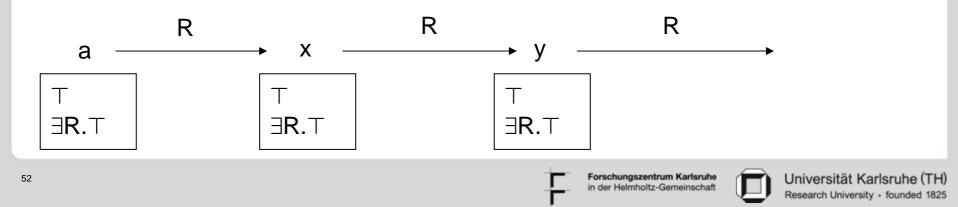
Solution: *blocking*.


DL Tableaux Termination Problem

TBox: ∃**R.**⊤

ABox: ⊤(a₁)

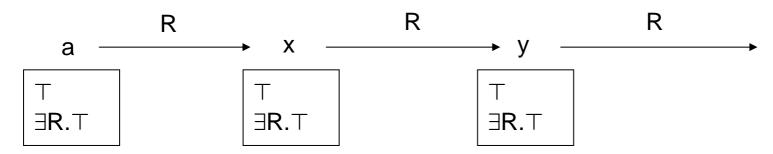
- Is satisfiable: Model M contains elements a₁^M,a₂^M,... and R^M(a_i^M,a_{i+1}^M) for all i ≥ 1.
- But naive tableau does not terminate!


DL Tableaux Termination Problem

Nothing essentially new happens.

Idea: y does not need to be expanded, because it is basically a copy of x.

 \Rightarrow Blocking



Blocking (in ALC)

y is *blocked* (by x) if

- y is not an individual (but a variable),
- y is a successor of x and $L(y) \subseteq L(x)$,
- or an ancestor of y is blocked.

y blocked by x in this example.

Blocking conditions for more expressive DLs are more involved; the idea is the same.

ALC Tableau example

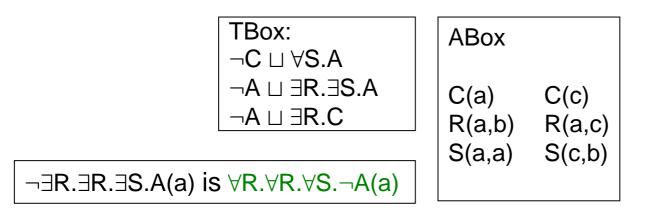
C(c)

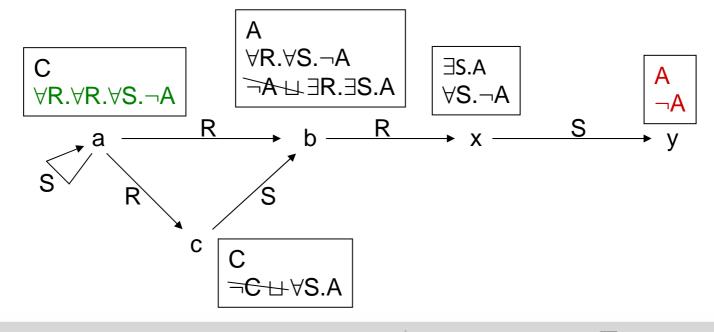
R(a,c)

S(c,b)

Show that C(a) R(a,b) S(a,a) C $\sqsubseteq \forall$ S.A A $\sqsubseteq \exists$ R. \exists S.A A $\sqsubseteq \exists$ R.C

implies $\exists R. \exists R. \exists S. A(a).$


Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft



Universität Karlsruhe (TH) Research University · founded 1825

ALC Tableau Example

Contents

- OWL Basic Ideas
- OWL As the Description Logic SROIQ(D)
- Different Perspectives on OWL
- Expressivity Examples: Rules in OWL
- OWL Semantics
- OWL Profiles
- Proof Theory
- Tools
- Outlook
- References

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

OWL tools (incomplete listing)

Reasoner:

- OWL 2 DL:
 - Pellet http://clarkparsia.com/pellet/
 - HermiT http://www.hermit-reasoner.com/
- OWL 2 EL:
 - CEL http://code.google.com/p/cel/
- OWL 2 RL:
 - essentially any rule engine
- OWL 2 QL:
- essentially any SQL engine (with a bit of query rewriting on top) Editors:
- Protégé
- NeOn Toolkit
- TopBraid Composer

Contents

- OWL Basic Ideas
- OWL As the Description Logic SROIQ(D)
- Different Perspectives on OWL
- Expressivity Examples: Rules in OWL
- OWL Semantics
- OWL Profiles
- Proof Theory
- Tools
- Outlook
- References

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Some Current Research Questions

- Integrating OWL and Rules
- Inconsistency handling / paraconsistent reasoning
- Local closed world reasoning
- Uncertainty handling (fuzzy / probabilistic)
- Modularization
- Distributedness
- Belief Revision (Ontology Evolution)
- Abduction/Explanation/Justification
- Approximate Reasoning
- Ontology Learning
- Modelling / Design Patterns
- Ontology Engineering (Modelling Processes)
- Interfaces (GUIs, Constrained Natural Language, etc.)

Further remarks

Several major conferences on Semantic Web:

- ISWC (>600), ESWC (>300), WWW Semantic Web track, IJCAI Semantic Web track, etc.
- Semantic Web languages taught in many university courses world-wide.
 - Becomes established topic.
- Industrial uptake currently happening
 - e.g. OWL reasoners by IBM, ORACLE
 - many application studies by major IT companies
 - considerable number of spin-offs
 - venture capital (e.g. VULCAN Inc.)
- Considerable uptake in the life sciences
- Substantial project funding (EU, NIH, etc.)

Suggestions for OWL?

Annual Workshop OWL: Experiences and Directions

- Co-located with ISWC09 (just beforehand), October 2009.
- Usually >80 people, most of them doing applications. Major OWL language designers are there.
- Past discussions had major impact on OWL 2 → state your opinon there!
- Low paper barrier, position statements and experience reports welcome. Deadline July 24th.

61 Institute – Author – Title – other informations

Contents

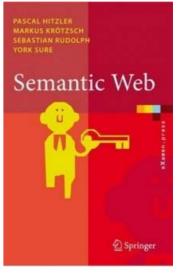
- OWL Basic Ideas
- OWL As the Description Logic SROIQ(D)
- Different Perspectives on OWL
- Expressivity Examples: Rules in OWL
- OWL Semantics
- OWL Profiles
- Proof Theory
- Tools
- Outlook
- References

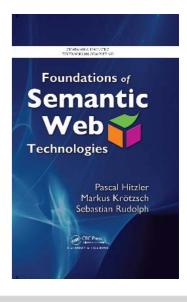
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

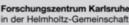
Main References

- W3C OWL Working Group, OWL 2 Web Ontology Language: Document Overview. http://www.w3.org/TR/owl2-overview/
- Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter Patel-Schneider, Sebastian Rudolph, OWL 2 Web Ontology Language: Primer. http://www.w3.org/TR/owl2-primer/

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, Peter F. Patel-Schneider, The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, 2nd edition, 2007.




Main References – Textbooks



 Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, York Sure, Semantic Web – Grundlagen.
 Springer, 2008.
 http://www.semantic-web-grundlagen.de/ (In German.)
 (Does not cover OWL 2.)

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, Foundations of Semantic Web Technologies. Chapman & Hall/CRC, 2009. http://www.semantic-web-book.org/wiki/FOST (Ask for a flyer from us.)

Universität Karlsruhe (TH) Research University · founded 1825

Further References

DL complexity calculator: http://www.cs.man.ac.uk/~ezolin/dl/

- Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, Description Logic Rules. In Malik Ghallab, Constantine D. Spyropoulos, Nikos Fakotakis, Nikos Avouris, eds.: Proceedings of the 18th European Conference on Artificial Intelligence (ECAI-08), pp. 80– 84. IOS Press 2008.
- Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, ELP: Tractable Rules for OWL 2. In: Amit Sheth, Steffen Staab, Mike Dean, Massimo Paolucci, Diana Maynard, Timothy Finin, Krishnaprasad Thirunarayan (eds.), The Semantic Web - ISWC 2008, 7th International Semantic Web Conference. Springer Lecture Notes in Computer Science Vol. 5318, 2008, pp. 649-664.

Thanks!

http://semantic-web-grundlagen.de/wiki/IJCAI-09_Tutorial

Universität Karlsruhe (TH) Research University · founded 1825