Knowledge Representation for the Semantic Web

Winter Quarter 2010

Slides 9 – 03/01/2010

Pascal Hitzler
Kno.e.sis Center
Wright State University, Dayton, OH
http://www.knoesis.org/pascal/
Slides are based on

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph

Foundations of Semantic Web Technologies

Chapman & Hall/CRC, 2010

Flyer with special offer is available.

http://www.semantic-web-book.org
Today: Reasoning with OWL
A is a logical consequence of K
written $K \models A$
if and only if
every model of K is a model of A.

• To show an entailment, we need to check all models?
• But that’s infinitely many!!!
A Reasoning Problem

We need algorithms which do not apply the model-based definition of logical consequence in a naive manner.

These algorithms should be syntax-based. (Computers can only do syntax manipulations.)

Luckily, such algorithms exist!

However, their correctness (soundness and completeness) needs to be proven formally. Which is often a non-trivial problem requiring substantial mathematical build-up.

We won't do the proofs here.
Contents

- Important inference problems
- Tableaux algorithm for ALC
- Tableaux algorithm for SHIQ
Important Inference Problems

- Global consistency of a knowledge base. KB \models false?
 - Is the knowledge base meaningful?
- Class consistency $\equiv \bot$?
 - Is C necessarily empty?
- Class inclusion (Subsumption) $C \subseteq D$?
 - Structuring knowledge bases
- Class equivalence $C \equiv D$?
 - Are two classes in fact the same class?
- Class disjointness $C \cap D = \bot$?
 - Do they have common members?
- Class membership $C(a)$?
 - Is a contained in C?
- Instance Retrieval „find all x with C(x)”
 - Find all (known!) individuals belonging to a given class.
Reduction to Unsatisfiability

- Global consistency of a knowledge base. \(\text{KB unsatisfiable} \)
 - Failure to find a model.
- Class consistency \(C \equiv \bot ? \)
 - \(\text{KB} \cup \{C(a)\} \) unsatisfiable
- Class inclusion (Subsumption) \(C \subseteq D ? \)
 - \(\text{KB} \cup \{C \cap \neg D(a)\} \) unsatisfiable (a new)
- Class equivalence \(C \equiv D ? \)
 - \(C \subseteq D \text{ and } D \subseteq C \)
- Class disjointness \(C \cap D = \bot ? \)
 - \(\text{KB} \cup \{(C \cap D)(a)\} \) unsatisfiable (a new)
- Class membership \(C(a) ? \)
 - \(\text{KB} \cup \{\neg C(a)\} \) unsatisfiable
- Instance Retrieval „find all x with C(x)“
 - Check class membership for all individuals.
We will present so-called tableaux algorithms.

They attempt to construct a model of the knowledge base in a „general, abstract“ manner.
- If the construction fails, then (provably) there is no model – i.e. the knowledge base is unsatisfiable.
- If the construction works, then it is satisfiable.

Hence the reduction of all inference problems to the checking of unsatisfiability of the knowledge base!
Contents

• Important inference problems
• Tableaux algorithm for ALC
• Tableaux algorithm for SHIQ
ALC tableaux: contents

- Transformation to negation normal form
- Naive tableaux algorithm
- Tableaux algorithm with blocking
Given a knowledge base K.

- Replace $C \equiv D$ by $C \subseteq D$ and $D \subseteq C$.
- Replace $C \subseteq D$ by $\neg C \sqcup D$.
- Apply the equations on the next slide exhaustively.

Resulting knowledge base: $\text{NNF}(K)$

Negation normal form of K.

Negation occurs only directly in front of atomic classes.
\[
\begin{align*}
\text{NNF}(C') &= C \quad \text{if } C \text{ is a class name} \\
\text{NNF}(\neg C') &= \neg C \quad \text{if } C \text{ is a class name} \\
\text{NNF}(\neg\neg C') &= \text{NNF}(C') \\
\text{NNF}(C \sqcup D) &= \text{NNF}(C') \sqcup \text{NNF}(D) \\
\text{NNF}(C \sqcap D) &= \text{NNF}(C') \sqcap \text{NNF}(D) \\
\text{NNF}(\neg(C \sqcup D)) &= \text{NNF}(\neg C') \sqcap \text{NNF}(\neg D) \\
\text{NNF}(\neg(C \sqcap D)) &= \text{NNF}(\neg C') \sqcup \text{NNF}(\neg D) \\
\text{NNF}(\forall R.C') &= \forall R.\text{NNF}(C') \\
\text{NNF}(\exists R.C') &= \exists R.\text{NNF}(C') \\
\text{NNF}(\neg\forall R.C') &= \exists R.\text{NNF}(\neg C') \\
\text{NNF}(\neg\exists R.C') &= \forall R.\text{NNF}(\neg C')
\end{align*}
\]

K and NNF(K) have the same models (are \textit{logically equivalent}).
Example

\[P \subseteq (E \cap U) \cup \neg(\neg E \cup D). \]

In negation normal form:

\[\neg P \cup (E \cap U) \cup (E \cap \neg D). \]
ALC tableaux: contents

• Transformation to negation normal form
• Naive tableaux algorithm
• Tableaux algorithm with blocking
Reduction to (un)satisfiability.

Idea:

• Given knowledge base K
• Attempt construction of a tree (called *Tableau*), which represents a model of K.
 (It’s actually rather a *Forest*.)
• If attempt fails, K is unsatisfiable.
The Tableau

- Nodes represent elements of the domain of the model
 - Every node x is labeled with a set $L(x)$ of class expressions. $C \in L(x)$ means: "x is in the extension of C"

- Edges stand for role relationships:
 - Every edge $<x,y>$ is labeled with a set $L(<x,y>)$ of role names. $R \in L(<x,y>)$ means: "(x,y) is in the extension of R"
Simple example

C(a)
C ⊆ ∃R.D
D ⊆ E

Does this entail (∃R.E)(a)?

(add ∀R.¬E(a) and show unsatisfiability)
Another example

C(a)
C ⊆ ∃R.D
D ⊆ E ∪ F
F ⊆ E

Does this entail (∃R.E)(a)?

(add ∀R.¬E(a)
and show unsatisfiability)

C
∃R.D
∀R.¬E

a
R

D
¬E (because ∀R.¬E(a))
choice: (D ⊆ E ∪ F):
1. E (contradiction!)
2. F
 E (contradiction!)
Formal Definition

- Input: K=TBox + ABox (in NNF)
- Output: Whether or not K is satisfiable.

- A tableau is a directed labeled graph
 - nodes are individuals or (new) variable names
 - nodes x are labeled with sets L(x) of classes
 - edges <x,y> are labeled with sets L(<x,y>) of role names
Initialisation

- Make a node for every individual in the ABox.
- Every node is labeled with the corresponding class names from the ABox.
- There is an edge, labeled with R, between a and b, if R(a,b) is in the ABox.

- (If there is no ABox, the initial tableau consists of a node x with empty label.)
Example initialisation

\[
\begin{align*}
\text{Human} & \subseteq \exists \text{hasParent.Human} \\
\text{Orphan} & \subseteq \text{Human} \cap \neg \exists \text{hasParent.Alive} \\
\text{Orphan(harrypotter)} & \\
\text{hasParent(harrypotter, jamespotter)} &
\end{align*}
\]
Careful: need NNF!

\[\neg \text{Human} \lor \exists \text{hasParent.Human} \]
\[\neg \text{Orphan} \lor (\text{Human} \land \forall \text{hasParent.} \neg \text{Alive}) \]

Orphan(harrypotter)
hasParent(harrypotter,jamespotter)
Constructing the tableau

- Non-deterministically extend the tableau using the rules on the next slide.

- Terminate, if
 - there is a contradiction in a node label (i.e., it contains classes C and \(\neg C \), or it contains \(\bot \)), or
 - none of the rules is applicable.

- If the tableau does not contain a contradiction, then the knowledge base is satisfiable.
 Or more precisely: If you can make a choice of rule applications such that no contradiction occurs and the process terminates, then the knowledge base is satisfiable.
Naive ALC tableaux rules

\(\square\)-rule: If \(C \cap D \in \mathcal{L}(x)\) and \(\{C, D\} \not\subseteq \mathcal{L}(x)\), then set \(\mathcal{L}(x) \leftarrow \{C, D\}\).

\(\square\)-rule: If \(C \cup D \in \mathcal{L}(x)\) and \(\{C, D\} \cap \mathcal{L}(x) = \emptyset\), then set \(\mathcal{L}(x) \leftarrow C\) or \(\mathcal{L}(x) \leftarrow D\).

\(\exists\)-rule: If \(\exists R.C \in \mathcal{L}(x)\) and there is no \(y\) with \(R \in L(x, y)\) and \(C \in \mathcal{L}(y)\), then

1. add a new node with label \(y\) (where \(y\) is a new node label),
2. set \(\mathcal{L}(x, y) = \{R\}\), and
3. set \(\mathcal{L}(y) = \{C\}\).

\(\forall\)-rule: If \(\forall R.C \in \mathcal{L}(x)\) and there is a node \(y\) with \(R \in L(x, y)\) and \(C \notin \mathcal{L}(y)\), then set \(\mathcal{L}(y) \leftarrow C\).

TBox-rule: If \(C\) is a TBox statement and \(C \notin \mathcal{L}(x)\), then set \(\mathcal{L}(x) \leftarrow C\).
Example

\neg \text{Human} \cup \exists \text{hasParent. Human}

\neg \text{Orphan} \cup (\text{Human} \cap \forall \text{hasParent. \neg Alive})

\text{Orphan(harrypotter)}

\text{hasParent(harrypotter, jamespotter)}

\neg \text{Alive(jamespotter)}

i.e. add: \text{Alive(jamespotter)}

and search for contradiction
ALC tableaux: contents

- Transformation to negation normal form
- Naive tableaux algorithm
- Tableaux algorithm with blocking
There’s a termination problem

TBox: $\exists R. T$

ABox: $T(a_1)$

- Obviously satisfiable:
 Model M with domain elements $a_1^M, a_2^M, ...$
 and $R^M(a_i^M, a_{i+1}^M)$ for all $i \geq 1$

- but tableaux algorithm does not terminate!
Solution?

Actually, things repeat!
Idea: it is not necessary to expand x, since it’s simply a copy of a.

⇒ Blocking
Blocking

- x is *blocked* (by y) if
 - x is not an individual (but a variable)
 - y is a predecessor of x and $L(x) \subseteq L(y)$
 - or a predecessor of x is blocked

Here, x is blocked by a.
Constructing the tableau

- Non-deterministically extend the tableau using the rules on the next slide, **but only apply a rule if x is not blocked!**

- **Terminate, if**
 - there is a contradiction in a node label (i.e., it contains classes C and \(\neg C \)), or
 - none of the rules is applicable.

- If the tableau does not contain a contradiction, then the knowledge base is satisfiable.
 Or more precisely: If you can make a choice of rule applications such that no contradiction occurs and the process terminates, then the knowledge base is satisfiable.
Naive ALC tableaux rules

\(\cap\)-rule: If \(C \cap D \in \mathcal{L}(x) \) and \(\{C, D\} \not\subseteq \mathcal{L}(x) \), then set \(\mathcal{L}(x) \leftarrow \{C, D\} \).

\(\sqcap\)-rule: If \(C \sqcap D \in \mathcal{L}(x) \) and \(\{C, D\} \cap \mathcal{L}(x) = \emptyset \), then set \(\mathcal{L}(x) \leftarrow C \) or \(\mathcal{L}(x) \leftarrow D \).

\(\exists\)-rule: If \(\exists R.C \in \mathcal{L}(x) \) and there is no \(y \) with \(R \in \mathcal{L}(x, y) \) and \(C \in \mathcal{L}(y) \), then

1. add a new node with label \(y \) (where \(y \) is a new node label),
2. set \(\mathcal{L}(x, y) = \{R\} \), and
3. set \(\mathcal{L}(y) = \{C\} \).

\(\forall\)-rule: If \(\forall R.C \in \mathcal{L}(x) \) and there is a node \(y \) with \(R \in \mathcal{L}(x, y) \) and \(C \not\in \mathcal{L}(y) \), then set \(\mathcal{L}(y) \leftarrow C \).

TBox-rule: If \(C \) is a TBox statement and \(C \not\in \mathcal{L}(x) \), then set \(\mathcal{L}(x) \leftarrow C \).

Apply only if \(x \) is not blocked!
Example (0)

- Knowledge base \{Human \sqsubseteq \exists \text{hasParent}\cdot \text{Human}, \text{Bird(tweety)}\}
- We want to show that Human(tweety) does \textit{not} hold, i.e. that \neg \text{Human(tweety)} is entailed.
- We will not be able to show this. I.e. Human(tweety) is \textit{possible}.

- Shorter notation:
 \begin{align*}
 &H \sqsubseteq \exists p.H \\
 &B(t)
 \\
 \neg H(t) \text{ entailed?}
 \end{align*}
Knowledge base \{\neg H \sqcup \exists p.H, B(t), H(t)\}

expansion stops. Cannot find contradiction!

2.: H blocked by t!
Example (0) the other case

Knowledge base \{\neg H \uplus \exists p.H, B(t), \neg H(t)\}

no further expansion possible – knowledge base is satisfiable!
Example(1)

Show, that

Professor $\subseteq (\text{Person} \cap \text{Universitymember})$
$\cup (\text{Person} \cap \neg \text{PhDstudent})$

entails that every Professor is a Person.

Find contradiction in:

$\neg P \cup (E \cap U) \cup (E \cap \neg S)$
$P \cap \neg E(x)$

\[
\begin{align*}
P \cap \neg E \\
P \\
\neg E \\
\neg P \cup (E \cap U) \cup (E \cap \neg S) \\
1. \quad \neg P \text{ (contradiction)} \\
2. \quad (E \cap U) \cup (E \cap \neg S) \\
1. \quad E \cap U \\
\quad \quad E \text{ (contradiction)} \\
2. \quad E \cap \neg S \\
\quad \quad E \text{ (contradiction)}
\end{align*}
\]
Example (2)

Show that
hasChild(john, peter)
hasChild(john, paul)
male(peter)
male(paul)
does not entail ∀ hasChild.male(john).

\[\neg \forall \text{hasChild.male} \equiv \exists \text{hasChild.} \neg \text{male} \]
Example (3)

Show that the knowledge base
Bird \sqsubseteq Flies
Penguin \sqsubseteq Bird
Penguin \sqcap Flies \sqsubseteq \bot
Penguin(tweety)
is unsatisfiable.

TBox:
$\neg B \sqcup F$
$\neg P \sqcup B$
$\neg P \sqcup \neg F \sqcup \bot$

P
$\neg P \sqcup B$
$\neg B \sqcup F$
$\neg P \sqcup \neg F$
1. $\neg P$ (contradiction)
2. B
 1. $\neg B$ (contradiction)
 2. F
 1. $\neg P$ (contradiction)
 2. $\neg F$ (contradiction)
Example (4)

Show that the knowledge base

\[C(a) \quad C(c) \]
\[R(a,b) \quad R(a,c) \]
\[S(a,a) \quad S(c,b) \]
\[C \subseteq \forall S.A \]
\[A \subseteq \exists R.\exists S.A \]
\[A \subseteq \exists R.C \]

entails \(\exists R.\exists R.\exists S.A(a) \).
Example (4)

TBox:
¬C ⊔ ∀S.A
¬A ⊔ ∃R.∃S.A
¬A ⊔ ∃R.C

¬∃R.∃R.∃S.A ≡ ∀R.∀R.∀S.¬A
Contents

• Important inference problems
• Tableaux algorithm for ALC
• Tableaux algorithm for SHIQ
Tableaux Algorithm for SHIQ

- Basic idea is the same.
- Blocking rule is more complicated
- Other modifications are also needed.
Given a knowledge base K.

- Replace $C \equiv D$ by $C \sqsubseteq D$ and $D \sqsubseteq C$.
- Replace $C \sqsubseteq D$ by $\neg C \sqcup D$.
- Apply the equations on the next slide exhaustively.

Resulting knowledge base: $\text{NNF}(K)$

Negation normal form of K.

Negation occurs only directly in front of atomic classes.
NNF(C) = C if C is a class name
NNF(¬C) = ¬C if C is a class name

NNF(¬¬C) = NNF(C)
NNF(C ⊔ D) = NNF(C) ⊔ NNF(D)
NNF(C ⊓ D) = NNF(C) ⊓ NNF(D)
NNF(¬(C ⊔ D)) = NNF(¬C) ⊓ NNF(¬D)
NNF(¬(C ⊓ D)) = NNF(¬C) ⊔ NNF(¬D)

NNF(∀R.C) = ∀R.NNF(C)
NNF(∃R.C) = ∃R.NNF(C)

NNF(¬∀R.C) = ∃R.NNF(¬C)
NNF(¬∃R.C) = ∀R.NNF(¬C)

NNF(≤n R.C) = ≤n R.NNF(C)
NNF(≥n R.C) = ≥n R.NNF(C)
NNF(¬ ≤n R.C) = ≥(n+1)R.NNF(C)
NNF(¬ ≥n R.C) = ≤(n-1)R.NNF(C), where ≤(-1)R.C = ⊥

K and NNF(K) have the same models (are logically equivalent).
Formal Definition

- A tableau is a directed labeled graph
 - nodes are individuals or (new) variable names
 - nodes x are labeled with sets $L(x)$ of classes
 - edges $<x,y>$ are labeled
 - either with sets $L(<x,y>)$ of role names or inverse role names
 - or with the symbol $=$ (for equality)
 - or with the symbol \neq (for inequality)
Initialisation

• Make a node for every individual in the ABox. These nodes are called *root nodes*.
• Every node is labeled with the corresponding class names from the ABox.
• There is an edge, labeled with R, between a and b, if R(a,b) is in the ABox.
• There is an edge, labeled ≠, between a and b if a ≠ b is in the ABox.
• There are no = relations (yet).
Notions

• We write S^{-} as S.
• If $R \in L(<x,y>)$ and $R \subseteq S$ (where R,S can be inverse roles), then
 – y is an S-successor of x and
 – x is an S-predecessor of y.
• If y is an S-successor or an S^{-}-predecessor of x, then y is an neighbor of x.
• Ancestor is the transitive closure of Predecessor.
Blocking for SHIQ

• x is blocked by y if x,y are not root nodes and
 – the following hold: ["x is directly blocked"]
 • no ancestor of x is blocked
 • there are predecessors y', x' of x
 • y is a successor of y' and x is a successor of x'
 • L(x) = L(y) and L(x') = L(y')
 • L(<x',x>) = L(<y',y>)
 – or the following holds: ["x is indirectly blocked"]
 • an ancestor of x is blocked or
 • x is successor of some y with L(<y,x>) =∅
Constructing the tableau

• Non-deterministically extend the tableau using the rules on the next slide.

• Terminate, if
 – there is a contradiction in a node label, i.e.,
 • it contains ⊥ or classes C and ¬C or
 • it contains a class ≤ nR.C and
 x also has (n+1) R-successors y_i and y_i ≠ y_j (for all i ≠ j)
 – or none of the rules is applicable.

• If the tableau does not contain a contradiction, then the knowledge base is satisfiable.
 Or more precisely: If you can make a choice of rule applications such that no contradiction occurs and the process terminates, then the knowledge base is satisfiable.
*-rule: If x is not indirectly blocked, $C \sqcap D \in \mathcal{L}(x)$, and $\{C, D\} \not\subseteq \mathcal{L}(x)$, then set $\mathcal{L}(x) \leftarrow \{C, D\}$.

□-rule: If x is not indirectly blocked, $C \sqcup D \in \mathcal{L}(x)$ and $\{C, D\} \cap \mathcal{L}(x) = \emptyset$, then set $\mathcal{L}(x) \leftarrow C$ or $\mathcal{L}(x) \leftarrow D$.

∃-rule: If x is not blocked, $\exists R.C \in \mathcal{L}(x)$, and there is no y with $R \in \mathcal{L}(x, y)$ and $C \in \mathcal{L}(y)$, then

1. add a new node with label y (where y is a new node label),
2. set $\mathcal{L}(x, y) = \{R\}$ and $\mathcal{L}(y) = \{C\}$.

∀-rule: If x is not indirectly blocked, $\forall R.C \in \mathcal{L}(x)$, and there is a node y with $R \in \mathcal{L}(x, y)$ and $C \not\in \mathcal{L}(y)$, then set $\mathcal{L}(y) \leftarrow C$.

TBox-rule: If x is not indirectly blocked, C is a TBox statement, and $C \not\in \mathcal{L}(x)$, then set $\mathcal{L}(x) \leftarrow C$.
trans-rule: If x is not indirectly blocked, $\forall S.C \in \mathcal{L}(x)$, S has a transitive subrole R, and x has an R-neighbor y with $\forall R.C \notin \mathcal{L}(y)$, then set $\mathcal{L}(y) \leftarrow \forall R.C$.

choose-rule: If x is not indirectly blocked, $\leq n S.C \in \mathcal{L}(x)$ or $\geq n S.C \in \mathcal{L}(x)$, and there is an S-neighbor y of x with $\{C, \text{NNF}(\neg C)\} \cap \mathcal{L}(y) = \emptyset$, then set $\mathcal{L}(y) \leftarrow C$ or $\mathcal{L}(y) \leftarrow \text{NNF}(\neg C)$.

\geq-rule: If x is not blocked, $\geq n S.C \in \mathcal{L}(x)$, and there are no n S-neighbors y_1, \ldots, y_n of x with $C \in \mathcal{L}(y_i)$ and $y_i \not\equiv y_j$ for $i, j \in \{1, \ldots, n\}$ and $i \neq j$, then

1. create n new nodes with labels y_1, \ldots, y_n (where the labels are new),
2. set $\mathcal{L}(x, y_i) = \{S\}$, $\mathcal{L}(y_i) = \{C\}$, and $y_i \not\equiv y_j$ for all $i, j \in \{1, \ldots, n\}$ with $i \neq j$.
\[\leq - \text{rule:} \] If \(x \) is not indirectly blocked, \(\leq_n S.C \in \mathcal{L}(x) \), there are more than \(n \) \(S \)-neighbors \(y_i \) of \(x \) with \(C \in \mathcal{L}(y_i) \), and \(x \) has two \(S \)-neighbors \(y, z \) such that \(y \) is neither a root node nor an ancestor of \(z \), \(y \not\approx z \) does not hold, and \(C \in \mathcal{L}(y) \cap \mathcal{L}(z) \), then

1. set \(\mathcal{L}(z) \leftarrow \mathcal{L}(y) \),
2. if \(z \) is an ancestor of \(x \), then \(\mathcal{L}(z, x) \leftarrow \{ \text{Inv}(R) \mid R \in \mathcal{L}(x, y) \} \),
3. if \(z \) is not an ancestor of \(x \), then \(\mathcal{L}(x, z) \leftarrow \mathcal{L}(x, y) \),
4. set \(\mathcal{L}(x, y) = \emptyset \), and
5. set \(u \not\approx z \) for all \(u \) with \(u \not\approx y \).

\[\leq - \text{root-rule:} \] If \(\leq_n S.C \in \mathcal{L}(x) \), there are more than \(n \) \(S \)-neighbors \(y_i \) of \(x \) with \(C \in \mathcal{L}(y_i) \), and \(x \) has two \(S \)-neighbors \(y, z \) which are both root nodes, \(y \not\approx z \) does not hold, and \(C \in \mathcal{L}(y) \cap \mathcal{L}(z) \), then

1. set \(\mathcal{L}(z) \leftarrow \mathcal{L}(y) \),
2. for all directed edges from \(y \) to some \(w \), set \(\mathcal{L}(z, w) \leftarrow \mathcal{L}(y, w) \),
3. for all directed edges from some \(w \) to \(y \), set \(\mathcal{L}(w, z) \leftarrow \mathcal{L}(w, y) \),
4. set \(\mathcal{L}(y) = \mathcal{L}(w, y) = \mathcal{L}(y, w) = \emptyset \) for all \(w \),
5. set \(u \not\approx z \) for all \(u \) with \(u \not\approx y \), and
6. set \(y \approx z \).
Example (1): cardinalities

Show, that

\[
\text{hasChild(john, peter)} \quad \text{hasChild(john, paul)} \quad \text{male(peter)} \quad \text{male(paul)} \quad \leq 2\text{hasChild.} \top(john)
\]
does not entail \(\forall \text{hasChild.male(john)} \).

\[
\neg \forall \text{hasChild.male} \equiv \exists \text{hasChild.} \neg \text{male}
\]

now apply \(\leq \)
Example (1): cardinalities

Show, that

hasChild(john, peter)
hasChild(john, paul)
male(peter)
male(paul)

≤ 2hasChild(T(john))

does not entail ∀ hasChild.male(john).

¬∀ hasChild.male ≡ ∃ hasChild.¬male

now apply ≤

backtracking!
Example (1): cardinalities – again

Show, that

\[\exists \text{hasChild} \cdot \neg \text{male}(\text{john}) \leq \exists \text{hasChild} \cdot \neg \text{male} \]

\[\neg \forall \text{hasChild} \cdot \text{male}(\text{john}) \]

\[\text{male}(\text{peter}) \]

\[\text{male}(\text{paul}) \]

\[\leq \exists \text{hasChild} \cdot \top(\text{john}) \text{ and } \neg \text{peter} \neq \text{paul} \]

does not entail \[\forall \text{hasChild} \cdot \text{male}(\text{john}) \].
Example (2): cardinalities

Show, that
\[\geq 2 \text{hasSon}. \top(\text{john}) \]
entails \[\geq 2 \text{hasChild}. \top(\text{john}). \]

\[\neg \geq 2 \text{hasSon}. \top \equiv \leq 1 \text{hasChild}. \top \]

hasSon \subseteq hasChild

hasSon-neighbors are also hasChild-neighbors, tableau terminates with contradiction
Example (3): choose

\[\geq 3 \text{hasSon}(\text{john}) \]
\[\leq 2 \text{hasSon.male}(\text{john}) \]
Is this contradictory?

No, because the following tableau is complete.
Example (4): inverse roles

\[\exists \text{hasChild}\cdot \text{human}(\text{john}) \]
\[\text{human} \sqsubseteq \forall \text{hasParent}\cdot \text{human} \]
\[\text{hasChild} \sqsubseteq \text{hasParent}^- \]
zu zeigen: human(\text{john})

\[\exists \text{hasChild}\cdot \text{human} \]
\[\neg \text{human} \]
\[\text{human} \]

\[\text{john} \xrightarrow{\text{hasChild}} \text{x} \]

\[\text{human} \]
\[\forall \text{hasParent}\cdot \text{human} \]

john is hP^--predecessor of x, hence hP-neighbor of x
Example (5): Transitivity and Blocking

\[
\begin{align*}
\text{human} & \subseteq \exists \text{hasFather}. \top \\
\text{human} & \subseteq \forall \text{hasAncestor}. \text{human} \\
\text{hasFather} & \subseteq \text{hasAncestor} \quad \text{Trans(}\text{hasAncestor}\text{)} \\
\text{human(john)} & \\
\text{Does this entail } & \leq 1 \text{hasFather.} \top \text{(john)}? \\
\text{Negation: } & \geq 2 \text{hasFather.} \top \text{(john)}
\end{align*}
\]
Example (5): Transitivity and Blocking

\[\text{human} \subseteq \exists \text{hasFather}. \top \]
\[\text{hasFather} \subseteq \text{hasAncestor} \]
\[\forall \text{hasAncestor} . \text{human}(\text{john}) \]
\[\text{human}(\text{john}) \]

\[\text{Trans(\text{hasAncestor})} \]
\[\geq 2 \text{hasFather}. \top(\text{john}) \]

\[
\begin{align*}
\text{h} & \geq 2hF. \top \\
\forall hA.h & \Rightarrow hF. \top
\end{align*}
\]

\[
\begin{align*}
\text{h} & \Rightarrow hF. \top \\
\forall hA.h & \Rightarrow hF. \top
\end{align*}
\]

\[
\begin{align*}
\text{h} & \Rightarrow hF. \top \\
\forall hA.h & \Rightarrow hF. \top
\end{align*}
\]

\[x \]
\[x_1 \]
\[x_2 \]

\[hF \rightarrow x \]
\[hF \rightarrow x_1 \]
\[hF \rightarrow x_2 \]

\[h \]
\[\forall hA.h \]

\[y \quad \ldots \]

same as branch above

\[\text{x}_2 \text{ now blocked by } \text{x}_1 : \]
\[\text{Pair } (\text{x}_1,\text{x}_2) \text{ repeats } (\text{x},\text{x}_1) \]
Example (6): Pairwise Blocking

\[\neg C \sqcap (\leq 1F) \sqcap \exists F^-.D \sqcap \forall R^-.(\exists F^- . D), \text{ where} \]
\[D = C \sqcap (\leq 1F) \sqcap \exists F^- . \neg C, \text{ Trans}(R), \text{ and } F \subseteq R, \]

is not satisfiable.

\[\neg C \]
\[\leq 1F \]
\[\exists F^- . D \]
\[\forall R^- . (\exists F^- . D) \]
\[C \]
\[\leq 1F \]
\[\exists F . \neg C \]

Without pairwise blocking, z would be blocked, which shouldn’t happen:
Expansion of \(\exists F . \neg C \) yields \(\neg C \) for node y as required.
Example (7): Dynamic Blocking

\[A \land \exists S. (\exists R. T \land \exists P. T \land \forall R. C \land \forall P. (\exists R. T) \land \forall P. (\forall R. C)) \]

with \(C = \forall R^-. (\forall P^- . (\forall S^- . \neg A)) \) and \(\text{Trans}(P) \), is not satisfiable.

Part of the tableau:

At this stage, \(z \) would be blocked by \(y \) (assuming the presence of another pair). However, when \(C \) from \(v \) is expanded, \(z \) becomes unblocked, which is necessary in order to label \(w \) with \(C \) which in turn labels \(x \) with \(\neg A \), yielding the required contradiction.
Tableaux Reasoners

- **Fact++**
 - http://owl.man.ac.uk/factplusplus/

- **Pellet**

- **RacerPro**
 - http://www.sts.tu-harburg.de/~r.f.moeller/racer/
Please don’t forget the preparations for the interactive class project session.