

Knowledge Representation for the Semantic Web

Winter Quarter 2011

Slides 6 – 01/27/2011 + 02/08/2011

Pascal Hitzler

11 + 02/08/2011 Kno.e.sis Center Wright State University, Dayton, OH http://www.knoesis.org/pascal/

KR4SW – Winter 2011 – Pascal Hitzler

Textbook (required)

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph

Foundations of Semantic Web Technologies

Chapman & Hall/CRC, 2010

Choice Magazine Outstanding Academic Title 2010 (one out of seven in Information & Computer Science)

CRC Press

http://www.semantic-web-book.org

Today: Description Logics

KR4SW – Winter 2011 – Pascal Hitzler

. КПО.€.SIS

1. Basic Ideas

- 2. The Description Logic SROIQ(D)
- 3. Different Perspectives
- 4. Class Project
- 5. Class Presentations

- individuals (written as URIs)
 - also: constants (FOL), resources (RDF), instances
 - http://example.org/sebastianRudolph
 - http://www.semantic-web-book.org/
 - we write these lowercase and abbreviated, e.g.
 "sebastianRudolph"
- classes (also written as URIs!)
 - also: concepts, unary predicates (FOL)
 - we write these uppercase, e.g. "Father"
- properties (also written as URIs!)
 - also: roles (DL), binary predicates (FOL)
 - we write these lowercase, e.g. "hasDaughter"

DL syntax

- Person(mary) :mary rdf:type :Person .
- Woman ⊑ Person
- :Woman rdfs:subClassOf :Person .
- Person ≡ HumanBeing (class equivalence):
 Person ⊑ HumanBeing AND HumanBeing ⊑ Person
- hasWife(john,mary)
 :john :hasWife :mary .
- hasWife
 hasSpouse

 hasWife rdfs:subPropertyOf :hasSpouse
 - hasSpouse \equiv marriedWith (property equivalence)

KR4SW – Winter 2011 – Pascal Hitzler

DL syntax

FOL syntax

• Person(mary) • Person(mary)

ABox statements

- Woman \sqsubseteq Person $\forall x (Woman(x) \rightarrow Person(x))$
 - Person \equiv HumanBeing (class equivalence)
- hasWife(john,mary)
 hasWife(john,mary)
 - hasWife \sqsubseteq hasSpouse $\forall x \forall y \text{ (hasWife}(x,y) \rightarrow hasSpouse(x,y))$
 - hasSpouse \equiv marriedWith (property equivalence)

TBox statements

۲

KR4SW – Winter 2011 – Pascal Hitzler

Special classes and properties

- owl:Thing (RDF syntax)
 - DL-syntax: ⊤
 - contains everything
- owl:Nothing (RDF syntax)
 - DL-syntax: \perp
 - empty class
- owl:topProperty (RDF syntax)
 - DL-syntax: U
 - every pair is in U
- owl:bottomProperty (RDF syntax)
 - empty property

• conjunction

- Mother = Woman \square Parent

"Mothers are exactly those who are women and parents."

• disjunction

 $\forall x (Parent(x) \leftrightarrow Mother(x) \lor Father(x))$

 $\forall x (Mother(x) \leftrightarrow Woman(x) \land Parent(x))$

- Parent \equiv Mother \sqcup Father

"Parents are exactly those who are mothers or fathers."

• negation

 $\forall x \text{ (ChildlessPerson(x)} \leftrightarrow \text{Person(x)} \land \neg \text{Parent(x))}$

 ChildlessPerson ≡ Person □ ¬Parent "ChildlessPersons are exactly those who are persons and

who are not parents."

Class constructors

- existential quantification
 - only to be used with a role also called a property restriction
 - Parent $\equiv \exists$ hasChild.Person "Parents are exactly those who have at least one child which is a Person."
- universal quantification
 - only to be used with a role also called a property restriction
 - Person □ Happy ≡ ∀hasChild.Happy "A (person which is also happy) is exactly (something all children of which are happy)."
 ∀x (Person(x) ∧ Happy(x) ↔

 $\forall y \text{ (hasChild(x,y)} \rightarrow \text{Happy(y))}$

Class constructors can be nested arbitrarily

 $\forall x (Parent(x) \leftrightarrow$ $\exists y (hasChild(x,y) \land Person(y))$

Today's Session: DLs (towards OWL)

- 1. Basic Ideas
- 2. The Description Logic SROIQ(D)
- 3. Different Perspectives
- 4. Class Project
- 5. Class Presentations

The description logic ALC Complexity: ExpTime **ABox expressions:** \bullet Individual assignments Father(john) **Property assignments** hasWife(john,mary) **TBox expressions** lacksquaresubclass relationships \equiv for equivalence conjunction Π disjunction negation Also: \top , \bot A property restrictions Ξ

The Description Logic ALC

- Set of *individuals* a,b,c,...
- Set of atomic classes (class names) A,B,...
- Set of role names R,S,...
- (Complex) class expressions are constructed as:

 $C,D::=A\mid\top\mid\perp\mid\neg C\mid C\sqcap D\mid C\sqcup D\mid\forall R.C\mid\exists R.C$

- A *TBox* is a set of statements of the form $C \equiv D$ or $C \sqsubseteq D$, where C and D are class expressions. They are called *general inclusion axioms*.
- An ABox consists of statements of the form C(a) or R(a,b), where C is a class expression, R is a role, and a, b are individuals.

Human ⊑ ∃hasParent.Human Orphan ⊑ Human □ ∀hasParent.¬Alive Orphan(harrypotter) hasParent(harrypotter,jamespotter)

- ALC + role chains = SR
- hasParent \circ hasBrother \sqsubseteq hasUncle.

 $\forall x \; \forall y \; (\exists z \; ((hasParent(x,z) \land hasBrother(z,y)) \rightarrow hasUncle(x,y)))$

includes top property and bottom property

- includes S = ALC + transitivity
 - hasAncestor o hasAncestor in hasAncestor
- includes SH = S + role hierarchies
 - hasFather ⊑ hasParent

Understanding SROIQ(D)

- O nominals (closed classes)
 - MyBirthdayGuests = {bill,john,mary}
 - Note the difference to MyBirthdayGuests(bill) MyBirthdayGuests(john) MyBirthdayGuests(mary)
- Individual equality and inequality (no unique name assumption!)
 - bill = john
 - {bill} ≡ {john}
 - bill ≠ john
 - {bill} \sqcap {john} $\equiv \bot$

Understanding SROIQ(D)

Е кпо.**е**.sis

- I inverse roles
 - hasParent \equiv hasChild
 - Orphan $\equiv \forall$ hasChild⁻.Dead
- Q qualified cardinality restrictions
 - <4 hasChild.Parent(john)</p>
 - HappyFather $\equiv \geq 2$ hasChild.Female
 - Car ⊑ =4hasTyre.⊤
- Complexity SHIQ, SHOQ, SHIO: ExpTime. Complexity SHOIQ: NExpTime Complexity SROIQ: N2ExpTime

Properties can be declared to be

- Transitive
- Symmetric hasSpouse
- Asymmetric
- Reflexive
- Irreflexive
- Functional hasHusband
- InverseFunctional hasHusband

 $\begin{array}{l} \mathsf{R}(a,b) \text{ and } \mathsf{R}(b,c) \to \mathsf{R}(a,c) \\ \mathsf{R}(a,b) \to \mathsf{R}(b,a) \\ \mathsf{R}(a,b) \to \mathsf{not} \ \mathsf{R}(b,a) \\ \mathsf{R}(a,a) \text{ for all } a \\ \mathsf{not} \ \mathsf{R}(a,a) \text{ for all } a \\ \mathsf{not} \ \mathsf{R}(a,a) \text{ for any } a \\ \mathsf{R}(a,b) \text{ and } \mathsf{R}(a,c) \to \mathsf{b=c} \\ \mathsf{R}(a,b) \text{ and } \mathsf{R}(c,b) \to \mathsf{a=c} \end{array}$

called property characteristics

hasAncestor

hasChild

parentOf

hasRelative

(D) – datatypes

- so far, we have only seen properties with individuals in second argument, called object properties or abstract roles (DL)
- properties with datatype literals in second argument are called data properties or concrete roles (DL)
- In OWL allowed are many XML Schema datatypes, including xsd:integer, xsd:string, xsd:float, xsd:booelan, xsd:anyURI, xsd:dateTime

and also e.g. owl:real

(D) – datatypes

- hasAge(john, "51"^^xsd:integer)
- additional use of *constraining facets* (from XML Schema)
 - e.g. Teenager = Person $\sqcap \exists$ hasAge.(xsd:integer: ≥12 and ≤19)

note: this is not standard DL notation! It's really only used in OWL.

further expressive features

- Self
 - PersonCommittingSuicide $\equiv \exists kills.Self$
- Keys (not really in SROIQ(D), but in OWL)
 - set of (object or data) properties whose values uniquely identify an object
- disjoint properties
 - Disjoint(hasParent,hasChild)
- explicit anonymous individuals
 - as in RDF: can be used instead of named individuals

- ABox assignments of individuals to classes or properties
- ALC: <u>□</u>, ≡ for classes
 □, □, ¬, ∃, ∀
 ⊤, ⊥
- SR: + property chains, property characteristics, role hierarchies ⊑
- SRO: + nominals {o}
- SROI: + inverse properties
- SROIQ: + qualified cardinality constraints
- SROIQ(D): + datatypes (including facets)
- + top and bottom roles (for objects and datatypes)
- + disjoint properties
- + Self
- + Keys (not in SROIQ(D), but in OWL)

Some Syntactic Sugar in OWL

SROIQ(D) is essentially (*semantically*) the same as OWL.

Available in OWL (see later) as syntactic sugar for DL axioms:

- disjoint classes
 - Apple \sqcap Pear $\sqsubseteq \bot$
- disjoint union
 - Parent = Mother ⊔ Father Mother ⊓ Father $\sqsubseteq \bot$
- negative property assignments (also for datatypes)
 - ¬hasAge(jack,"53"^^xsd:integer)

€ Kno.€.sis

arbitrary property chain axioms lead to undecidability

- **restriction**: set of property chain axioms has to be *regular*
 - there must be a strict linear order < on the properties</p>
 - every property chain axiom has to have one of the following forms: $R \circ R \Box R$ $S^- \Box R$ $S_1 \circ S_2 \circ S_2 \cup S_2 \cup R$
 - $R \circ S_1 \circ S_2 \circ \dots \circ S_n \sqsubseteq R \qquad S_1 \circ S_2 \circ \dots$ $R \circ S_1 \circ S_2 \circ \dots \circ S_n \sqsubseteq R \qquad S_1 \circ S_2 \circ \dots$

$$S_1 \circ S_2 \circ _ \circ S_n \sqsubseteq R$$
$$S_1 \circ S_2 \circ _ \circ S_n \circ R \sqsubseteq R$$

• thereby,
$$S_i \prec R$$
 for all i= 1, 2, ..., *n*.

Example 1: $R \circ S \sqsubseteq R$ $S \circ S \sqsubseteq S$ $R \circ S \circ R \sqsubseteq T$

 \rightarrow regular with order S \prec R \prec T

Example 2: $\mathbf{R} \circ \mathbf{T} \circ \mathbf{S} \sqsubseteq \mathbf{T}$

 \rightarrow not regular because form not admissible

Example 3: $R \circ S \sqsubseteq S \circ R \sqsubseteq R$

 \rightarrow not regular because no adequate order exists

- combining property chain axioms and cardinality constraints may lead to undecidability
- restriction: use only simple properties in cardinality expressions (i.e. those which cannot be – directly or indirectly – inferred from property chains)
- technically:
 - for any property chain axiom S₁ o S₂ o ... o Sn ⊑ R with n>1, R is non-simple
 - for any subproperty axiom S ⊑ R with S non-simple, R is non-simple
 - all other properties are simple
- **Example:** $Q \circ P \sqsubseteq R$ $R \circ P \sqsubseteq R$ $R \sqsubseteq S$ $P \sqsubseteq R$ $Q \sqsubseteq S$ non-simple: R, S simple: P, Q

Today's Session: DLs (towards OWL)

- 1. Basic Ideas
- 2. The Description Logic SROIQ(D)
- 3. Different Perspectives
- 4. Class Project
- 5. Class Presentations

OWL – Extralogical Features

- OWL ontologies have URIs and can be referenced by others via import statements
 - import statements
- Namespace declarations
- Entity declarations (must be done)
- Versioning information etc.
- Annotations
 - Entities and axioms (statements) can be endowed with annotations, e.g. using rdfs:comment.
 - OWL syntax provides *annotation properties* for this purpose.

Note: We still have to give a syntax for OWL – forthcoming.

The modal logic perspective

- Description logics can be understood from a modal logic perspective.
- Each pair of ∀R and ∃R statements give rise to a pair of modalities.
- Essentially, some description logics are multi-modal logics.

The RDFS perspective

RDFS semantics is weaker

- :mary rdf:type :Person .
- :Mother rdfs:subClassOf :Woman .
- :john :hasWife :Mary .
- :hasWife rdfs:subPropertyOf :hasSpouse
- :hasWife rdfs:range :Woman .
- :hasWife rdfs:domain :Man .

- Person(mary)
- Mother \sqsubseteq Woman
- hasWife(john,mary)
- hasWife ⊑ hasSpouse

- ⊤ ⊑ ∀hasWife.Woman
- ⊤ ⊑ ∀hasWife[¯].Man or ∃hasWife.⊤ ⊑ Man

RDFS also allows to

- make statements about statements \rightarrow only possible through annotations in OWL (not present in SROID(D))
- mix class names, individual names, property names (they are all URIs) $\rightarrow punning \text{ in OWL}$

Punning

- Description logics impose *type separation*, i.e. names of individuals, classes, and properties must be disjoint.
- In OWL 2 Full, type separation does not apply.
- In OWL 2 DL, type separation is relaxed, but a class X and an individual X are interpreted semantically as if they were different.
- Father(john) SocialRole(Father)
- See further below on the two different types/semantics for OWL: OWL DL and OWL Full.

Today's Session: DLs (towards OWL)

- 1. Basic Ideas
- 2. The Description Logic SROIQ(D)
- 3. Different Perspectives
- 4. Class Project
- 5. Class Presentations

• none this time.

Today's Session: DLs (towards OWL)

- 1. Basic Ideas
- 2. The Description Logic SROIQ(D)
- 3. Different Perspectives
- 4. Class Project
- 5. Class Presentations

Class presentations – first topics

- SPARQL 1.1 entailment regimes: http://www.w3.org/TR/2010/WD-sparql11-entailment-20100126/ http://www.w3.org/2009/sparql/docs/entailment/xmlspec.xml
- Aidan Hogan, Andreas Harth, Axel Polleres: SAOR: Authoritative Reasoning for the Web. ASWC 2008: 76-90
- Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van Harmelen, Henri E. Bal: OWL Reasoning with WebPIE: Calculating the Closure of 100 Billion Triples. ESWC (1) 2010: 213-227
- Yuan Ren, Jeff Z. Pan, Yuting Zhao: Soundness Preserving Approximation for TBox Reasoning. AAAI 2010
- Franz Baader, Sebastian Brandt, Carsten Lutz: Pushing the EL Envelope. IJCAI 2005: 364-369

Thursday 13th of January: RDFS Part I Tuesday 18th of January: Exercise Session Thursday 20th of January: RDF and RDFS Semantics Tuesday 25th of January: RDF and RDFS Semantics Thursday 27th of January: Description Logics Tuesday 8th of February: Description Logic Semantics Thursday 10th of February: Exercises Tuesday 15th of February: OWL syntax

Estimated breakdown of sessions:

Intro + XML: 2 RDF: 4 OWL and Logic: 5 Class Presentations: 3 Exercise sessions: 3

