Knowledge Representation for the Semantic Web

Winter Quarter 2011

Slides 2 – 01/06/2011

Pascal Hitzler
Kno.e.sis Center
Wright State University, Dayton, OH
http://www.knoesis.org/pascal/
Slides are based on

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph

Foundations of Semantic Web Technologies

Chapman & Hall/CRC, 2010

Choice Magazine Outstanding Academic Title 2010 (one out of seven in Information & Computer Science)

http://www.semantic-web-book.org
Today’s Session

1. The Semantic Web Layer Cake

2. Essentials of the eXtensible Markup Language XML

3. Class project – status

4. Class presentations – first topics
Tim Berners-Lee version, 2000

http://www.w3.org/2000/Talks/1206-xml2k-tbl/Overview.html
Tim Berners-Lee version, 2003

http://www.w3.org/2003/Talks/0922-rsoc-tbl/
Horrocks et al, 2005

http://www.w3.org/2006/Talks/0718-aaai-tbl/
Planned coverage in this lecture

User Interface & applications

Trust

Proof

Unifying Logic

Query: SPARQL

ontology: OWL

Rules: RIF

RDF-S

Data interchange: RDF

Crypto

XML

URI

Unicode
Planned coverage in this lecture

- User Interface & applications
- Trust
- Proof
- Unifying Logic
- Query: SPARQL
- ontology: OWL
- Rules: RIF
- Crypto
- RDF-S
- Data interchange: RDF
- XML
- URI
- Unicode
Today’s Session

1. The Semantic Web Layer Cake

2. Essentials of the eXtensible Markup Language XML

 Appendix A in the textbook, plus some material on namespaces and URIs taken from Chapter 2

3. Class project – status

4. Class presentations – first topics
XML contents

- Motivation
- Syntax
- URIs
- Namespaces
- XML Schema
Markup-languages

- Basic idea: adding additional information or structure to (unstructured) text

- to *annotate* text
 Webster’s: annotation –
 a note added by way of comment or explanation

- text = data
 additional info = metadata (data about data)

- usually done by way of *tags*:
 `<tag-name> ... Text ... </tag-name>`
 [opening tag] [closing tag]
Markup-languages

• Most prominent example: HTML
 Annotations used for encoding display information

• `<i>This book</i>` has the title `FOST`. Browser shows:

 This book has the title *FOST*.

• Same idea can be used for content description:

Tags may be nested

```xml
<lecture>
    <title> KR4SW </title>
    <lecturer>
        <title> Prof. Dr. </title>
        <firstName> Pascal </firstName>
        <lastName> Hitzler </lastName>
    </lecturer>
</lecture>
```
Tree structure

```
<lecture>
  <title> KR4SW </title>
  <lecturer>
    <title> Prof. Dr. </title>
    <firstName> Pascal </firstName>
    <lastName> Hitzler </lastName>
  </lecturer>
</lecture>
```
XML contents

• Motivation

• Syntax

• URIs

• Namespaces

• XML Schema
XML

• eXtensible Markup Language

• origin: structured text
• W3C standard for data exchange
 [see www.w3.org for W3C]
 – input and output data of applications can be described using XML
 – additionally only needed: a standardized description / vocabulary
• complementary to HTML
 – HTML is for display/presentation
 – XML is for describing content
• database view: XML as data model for semi-structured data
XML-Syntax: prolog

• every XML document is a text document

• every XML document begins with a declaration containing
 – the version number of the used standard
 – and optionally, the character encoding.

• example:

 <?xml version="1.0" encoding="utf-8"?>
XML-Syntax: XML Elements

- **XML elements**
 - describe objects which are enclosed in matching tag-pairs.
 - can contain text and/or further XML elements, arbitrarily nested.
 - empty elements can be abbreviated, e.g. `<year></year>` can be written as `<year/>`.
 - the outermost element is called **root element** (there is only one)

<table>
<thead>
<tr>
<th>opening tag:</th>
<th><code><author></code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code><firstName></code>Sebastian<code></firstName></code></td>
<td></td>
</tr>
<tr>
<td><code><lastName></code>Rudolph<code></lastName></code></td>
<td></td>
</tr>
<tr>
<td><code><email></code>rudolph@kit.edu<code></email></code></td>
<td></td>
</tr>
<tr>
<td>text:</td>
<td>This is some text inside an XML element.</td>
</tr>
<tr>
<td>closing tag:</td>
<td><code></author></code></td>
</tr>
</tbody>
</table>
XML-Syntax: XML Attributes

- XML attributes
 - are name-string-pairs in opening tags (or self-closing tags).
 - are associated with the corresponding XML element.
 - are an alternative means to sub-elements for describing data.

```xml
<author email="rudolph@kit.edu">
  <firstName>Sebastian</firstName>
  <lastName>Rudolph</lastName>
  This is some text inside an XML element.
</author>
```
XML-Syntax, XML vs. HTML

- XML Documents which are syntactically correct, are said to be well-formed.

- XML vs HTML:
 - HTML uses a fixed vocabulary (set of tags) with a fixed meaning (for display of text)
 - XML allows free choice of tag names, whose meaning is not fixed.

```xml
<h1> Bib </h1>

<p> <i>FOST</i> <b>2010</b> </p>

<Bib id="o1">
  <p> <i>FOST</i> <author>...</author> <year>2010</year> </p>
</Bib>
```
XML contents

• Motivation
• Syntax
• URIs
• Namespaces
• XML Schema
URIs

- URI = Uniform Resource Identifier
 URL = Uniform Resource Locator (has a location on the WWW)
 IRI = Internationalized Resource Identifier (uses Unicode)

 URLs ⊆ URIs ⊆ IRIs

- used for identifying Web resources

- resources can be anything that has an identity in the context of an application (books, locations, humans, abstract concepts, etc.)

- analogous to, e.g., ISBN for books
URIs – format

scheme: //[authority]path[?query][#fragment]

- scheme: type of URI, e.g. http, ftp, mailto, file, irc
- authority: typically a domain name
- path: e.g. /etc/passwd/
- query: optional; provides non-hierarchical information. Usually for parameters, e.g. for a web service
- fragment: optional; often used to address part of a retrieved resource, e.g. section of a HTML file.

- not all characters are allowed in URIs.
URIs

• where do they come from?

• what URIs to use?

• what does a URI stand for?

 http://www.pascal-hitzler.de – is this a URI for a web page or for the person “Pascal Hitzler”?

• What about URIs which do not dereference?
XML contents

• Motivation
• Syntax
• URIs
• Namespaces
• XML Schema
Namespaces

- same tag name – probably better to disambiguate
Namespaces

• disambiguate using namespaces
• same mechanism can be used for indicating different sources for data
Namespaces – declaration mechanisms

• Namespace declaration
 Usage: namespace:name in XML element names
 Declaration: xmlns:namespace="<uri>" in XML opening tags or empty-element tags. Affects XML subtree, multiple declarations possible.

• Base namespace (only RDF)
 Usage: non-URI name as value for some RDF/XML elements.
 Declaration: xml:base="<uri>" in XML opening tags or empty-element tags. Affects XML subtree, multiple declarations possible.

• Entity declaration
 This is part of so-called Document Type Definitions.
 Usage: &entity; in XML attribute values or RDF literal values.
 Declaration: <!ENTITY entity ‘text’> in initial DOCTYPE declaration. Affects whole document, only one declaration possible.
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF

[<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY otherOnt "http://example.org/otherOntology/" >
]

Usage examples follow below.

We will not discuss Document Type Declarations (DTDs) in more
detail – they are a weaker mechanism than XML schema. Just
use the above as a form of “macro”.

XML contents

- Motivation
- Syntax
- URIs
- Namespaces
- XML Schema
XML Schema

- XML allows a lot of freedom in encoding information

```xml
<author>Sebastian Rudolph</author>

<author name="Sebastian Rudolph"/>

<author><fullName>Sebastian Rudolph</fullName></author>

<author><firstName>Sebastian</firstName><secondName>Rudolph</secondName></author>

<author givenName="Sebastian" surname="Rudolph"/>
XML Schema

• These degrees of freedom get in the way when exchanging XML documents between applications!

• It is necessary to come up with agreements about the structure of the information, including the names of tags and attributes, and whether certain subelements are required or not.

• XML Schema is a W3C standard which provides for this.

• XML schemas are themselves written in XML.

• An XML document is said to be valid if it adheres to a corresponding XML schema.
• An XML Schema document is a well-formed XML document which contains *XML schema definitions*.

• An XML schema definition begins with an opening tag like

```xml
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
```

it then contains *element types, which can contain attribute types*, which themselves refer to predefined or user-defined datatypes.

• datatypes are, e.g. `xsd:integer`, `xsd:string`, `xsd:time`, `xsd:date`, `xsd:anyURI`, `xsd:ID` (a specific kind of string used as identifier of XML elements)
XML Schema Example

```xml
<?xml version="1.1" encoding="utf-16"?>
<!DOCTYPE xsd:schema
 [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
]>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="author" type="&xsd;string"
 minOccurs="1" maxOccurs="unbounded">
 <xsd:attribute name="email" type="&xsd;string"
 use="required">
 <xsd:attribute name="homepage" type="&xsd;anyURI" use="optional">
 </xsd:element>
 </xsd:schema>
</xsd:schema>
```
XML Schema Example

```xml
<xsd:element name="author" type="&xsd;string"
 minOccurs="1" maxOccurs="unbounded">
 <xsd:attribute name="email" type="&xsd;string"
 use="required">
 <xsd:attribute name="homepage" type="&xsd;anyURI"
 use="optional">
</xsd:element>

<author email="email1@example.org" homepage="http://korrekt.org">
 Markus Kroetzsch
</author>

<author email="email2@example.org">
 Sebastian Rudolph
</author>
```
XML Schema – user-defined types

Simple types: obtained by restricting other types.
<xsd:simpleType name="humanAge">
    <xsd:restriction base="&xsd;integer">
        <xsd:minInclusive value="0"/>
        <xsd:maxInclusive value="200"/>
    </xsd:restriction>
</xsd:simpleType>

No use of embedded element or attribute types!
XML Schema – user-defined types

```
<xsd:complexType name="bookType">
 <xsd:sequence>
 <xsd:element name="author" type="&xsd;string"
 minOccurs="1" maxOccurs="unbounded" />
 <xsd:element name="title" type="&xsd;string"
 minOccurs="1" maxOccurs="1" />
 <xsd:element name="publisher" type="&xsd;string"
 minOccurs="1" maxOccurs="1" />
 <xsd:element name="year" type="&xsd;gYear"
 minOccurs="1" maxOccurs="1" />
 </xsd:sequence>
 <xsd:attribute name="ISBNnumber" type="&xsd;nonNegativeInteger"
 use="optional" />
</xsd:complexType>
```
XML Schema – user-defined types

<xsd:complexType name="researchBookType">
  <xsd:extension base="bookType">
    <xsd:sequence>
      <xsd:element name="field" type="&xsd;string" />
    </xsd:sequence>
    <xsd:attribute name="price" type="&xsd;nonNegativeInteger"
                        use="optional" />
  </xsd:complexType>
Today’s Session

1. The Semantic Web Layer Cake

2. Essentials of the eXtensible Markup Language XML

3. Class project – status

4. Class presentations – first topics
Class project – status

Domains:

- vehicles
- university
- stock exchange
- language
- computers
- butterflies
- games
- hostile human action
- social networks
Today’s Session

1. The Semantic Web Layer Cake

2. Essentials of the eXtensible Markup Language XML

3. Class project – status

4. Class presentations – first topics
Class presentations – first topics

- Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van Harmelen, Henri E. Bal: OWL Reasoning with WebPIE: Calculating the Closure of 100 Billion Triples. ESWC (1) 2010: 213-227
- Yuan Ren, Jeff Z. Pan, Yuting Zhao: Soundness Preserving Approximation for TBox Reasoning. AAAI 2010
- Franz Baader, Sebastian Brandt, Carsten Lutz: Pushing the EL Envelope. IJCAI 2005: 364-369
Topic next Tuesday: RDF Part I

Exercise session planned for Tuesday, 18th of January

Estimated (incomplete) breakdown of sessions:
Intro + XML: 2
RDF: 3
OWL and Logic: 6
SPARQL and Querying: 2
Class Presentations: 3
Exercise sessions: 3