
ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL 2 – Theory and Practice

Bernardo Cuenca Grau
University of Oxford
UK

Birte Glimm
University of Oxford
UK

Pascal Hitzler
Kno.e.sis Center

Wright State University
Dayton, OH, USA

Hector Perez-Urbina
Clark & Parsia, LLC

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 2

Today’s Schedule

09:00 - 10:00 OWL introduction (Pascal)

10:00 - 10:30 coffee break

10:30 - 12:30 OWL introduction (Pascal)

12:30 - 14:00 lunch

14:00 - 16:00 hands-on session (Birte)

16:00 - 16:30 coffee break

16:30 - 18:30 applications (Bernardo)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 3

Textbook

Pascal Hitzler, Markus Krötzsch,
Sebastian Rudolph

Foundations of Semantic Web
Technologies
Chapman & Hall/CRC, 2009

Grab a flyer!

http://www.semantic-web-book.org

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 4

Textbook (Chinese translation)

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph

语义Web技术基础
Tsinghua University Press (清华大学出版社）, 2011, to appear

Translators:
Yong Yu, Haofeng Wang, Guilin Qi (俞勇，王昊奋，漆桂林)

http://www.semantic-web-book.org

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 5

Slides

Available from

http://www.semantic-web-book.org/page/ISWC2010_Tutorial

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 6

Part 1

OWL 2 – Syntax, Semantics, Reasoning

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 7

OWL

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 8

Main References Part 1

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, Foundations
of Semantic Web Technologies, Chapman & Hall/CRC, 2009

OWL 2 Document Overview: http://www.w3.org/TR/owl2-overview/

Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-
Schneider, Sebastian Rudolph, OWL 2 Web Ontology Language:
Primer. W3C Recommendation, 27 October 2009.
http://www.w3.org/TR/owl2-primer/

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 9

OWL – Overview

• Web Ontology Language
– W3C Recommendation for the Semantic Web, 2004
– OWL 2 (revised W3C Recommendation), 2009

• Semantic Web KR language based on description logics (DLs)
– OWL DL is essentially DL SROIQ(D)
– KR for web resources, using URIs.
– Using web-enabled syntaxes, e.g. based on XML or RDF.

We present
• DL syntax (used in research – not part of the W3C

recommendation)
• (some) RDF Turtle syntax

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 10

Contents

• OWL – Basic Ideas
• OWL as the Description Logic SROIQ(D)
• Different Perspectives on OWL
• OWL Semantics
• OWL Profiles
• Proof Theory
• Tools

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 11

Contents

• OWL – Basic Ideas
• OWL as the Description Logic SROIQ(D)
• Different Perspectives on OWL
• OWL Semantics
• OWL Profiles
• Proof Theory
• Tools

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 12

Rationale behind OWL

• Open World Assumption
• Favourable trade-off between expressivity and scalability
• Integrates with RDFS
• Purely declarative semantics

Features:
• Fragment of first-order predicate logic (FOL)
• Decidable
• Known complexity classes (N2ExpTime for OWL 2 DL)
• Reasonably efficient for real KBs

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 13

OWL Building Blocks

• individuals (written as URIs)
– also: constants (FOL), resources (RDF)
– http://example.org/sebastianRudolph
– http://www.semantic-web-book.org
– we write these lowercase and abbreviated, e.g.

"sebastianRudolph"
• classes (also written as URIs!)

– also: concepts, unary predicates (FOL)
– we write these uppercase, e.g. "Father"

• properties (also written as URIs!)
– also: roles (DL), binary predicates (FOL)
– we write these lowercase, e.g. "hasDaughter"

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

DL syntax FOL syntax

• Person(mary)

• Woman v Person
– Person ≡ HumanBeing

• hasWife(john,mary)

• hasWife v hasSpouse
– hasSpouse ≡ marriedWith

• Person(mary)

• 8x (Woman(x) ! Person(x))

• hasWife(john,mary)

• 8x 8y (hasWife(x,y)! hasSpouse(x,y))

ABox statements

TBox statements

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

• :mary rdf:type :Person .

• :Woman rdfs:subClassOf :Person .

• :john :hasWife :mary .

• :hasWife rdfs:subPropertyOf :hasSpouse .

• Person(mary)

• Woman v Person
– Person ≡ HumanBeing

• hasWife(john,mary)

• hasWife v hasSpouse
– hasSpouse ≡ marriedWith

DL syntax FOL syntax

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 16

Special classes and properties

• owl:Thing (RDF syntax)
– DL-syntax: >
– contains everything

• owl:Nothing (RDF syntax)
– DL-syntax: ?
– empty class

• owl:topProperty (RDF syntax)
– DL-syntax: U
– every pair is in U

• owl:bottomProperty (RDF syntax)
– empty property

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 17

Class constructors

• conjunction
– Mother ´ Woman u Parent
– :Mother owl:equivalentClass _:x .

_:x rdf:type owl:Class .
_:x owl:intersectionOf (:Woman :Parent) .

• disjunction
– Parent ´ Mother t Father
– :Parent owl:equivalentClass _:x .

_:x rdf:type owl:Class .
_:x owl:unionOf (:Mother :Father) .

• negation
– ChildlessPerson ´ Person u :Parent
– :ChildlessPerson owl:equivalentClass _:x .

_:x rdf:type owl:Class .
_:x owl:intersectionOf (:Person _:y) .
_:y owl:complementOf :Parent .

8x (Mother(x) $ Woman(x) Æ Parent(x))

8x (Parent(x) $ Mother(x) Ç Father(x))

8x (ChildlessPerson(x) $ Person(x) Æ :Parent(x))

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 18

Class constructors

• existential quantification
– only to be used with a role – also called a property restriction
– Parent ´ 9hasChild.Person
– :Parent owl:equivalentClass _:x .

_:x rdf:type owl:Restriction .
_:x owl:onProperty :hasChild .
_:x owl:someValuesFrom :Person .

• universal quantification
– only to be used with a role – also called a property restriction
– Person u Happy ´ 8hasChild.Happy
– _:x rdf:type owl:Class .

_:x owl:intersectionOf (:Person :Happy) .
_:x owl:equivalentClass _:y .
_:y rdf:type owl:Restriction .
_:y owl:onProperty :hasChild .
_:y owl:allValuesFrom :Happy .

• Class constructors can be nested arbitrarily

8x (Parent(x) $
9y (hasChild(x,y) Æ Person(y)))

8x (Person(x) Æ Happy(x) $
8y (hasChild(x,y) ! Happy(y)))

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 19

Contents

• OWL – Basic Ideas
• OWL as the Description Logic SROIQ(D)
• Different Perspectives on OWL
• OWL Semantics
• OWL Profiles
• Proof Theory
• Tools

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 20

Understanding SROIQ(D)

The description logic ALC

• ABox expressions:
Individual assignments Father(john)
Property assignments hasWife(john,mary)

• TBox expressions
subclass relationships v

conjunction u
disjunction t
negation :

property restrictions 8
9

Complexity: ExpTime

Also: >, ?

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 21

Understanding SROIQ(D)

ALC + role chains = SR

• hasParent o hasBrother v hasUncle

– includes top property and bottom property

• includes S = ALC + transitivity
– hasAncestor o hasAncestor v hasAncestor

• includes SH = S + role hierarchies
– hasFather v hasParent

8x 8y (9z ((hasParent(x,z) Æ hasBrother(z,y)) ! hasUncle(x,y)))

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 22

Understanding SROIQ(D)

• O – nominals (closed classes)
– MyBirthdayGuests ´ {bill,john,mary}
– Note the difference to

MyBirthdayGuests(bill)
MyBirthdayGuests(john)
MyBirthdayGuests(mary)

• Individual equality and inequality (no unique name assumption!)
– bill = john

• {bill} ´ {john}
– bill ≠ john

• {bill} u {john} ´ ?

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 23

Understanding SROIQ(D)

• I – inverse roles

– hasParent ´ hasChild-

– Orphan ´ 8hasChild-.Dead

• Q – qualified cardinality restrictions
– ·4 hasChild.Parent(john)
– HappyFather ´ ¸2 hasChild.Female
– Car v =4hasTyre.>

• Complexity SHIQ, SHOQ, SHIO: ExpTime.
Complexity SHOIQ: NExpTime
Complexity SROIQ: N2ExpTime

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 24

Understanding SROIQ(D)

Properties can be declared to be

• Transitive hasAncestor
• Symmetric hasSpouse
• Asymmetric hasChild
• Reflexive hasRelative
• Irreflexive parentOf
• Functional hasHusband
• InverseFunctional hasHusband

called property characteristics

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 25

Understanding SROIQ(D)

(D) – datatypes

• so far, we have only seen properties with individuals in second
argument, called object properties or abstract roles (DL)

• properties with datatype literals in second argument are called
data properties or concrete roles (DL)

• allowed are many XML Schema datatypes, including
xsd:integer, xsd:string, xsd:float, xsd:booelan, xsd:anyURI,
xsd:dateTime

and also e.g. owl:real

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 26

Understanding SROIQ(D)

(D) – datatypes

• hasAge(john, "51"^^xsd:integer)

• additional use of constraining facets (from XML Schema)
– e.g. Teenager ´ Person u 9hasAge.(xsd:integer: ¸12 and ·19)

note: this is not standard DL notation!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 27

Understanding SROIQ(D)

further expressive features

• Self
– PersonCommittingSuicide ´ 9kills.Self

• Keys (not really in SROIQ(D), but in OWL)
– set of (object or data) properties whose values uniquely

identify an object
• disjoint properties

– Disjoint(hasParent,hasChild)
• explicit anonymous individuals

– as in RDF: can be used instead of named individuals

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 28

SROIQ(D) constructors – overview

• ABox assignments of individuals to classes or properties
• ALC: v, ´ for classes

u, t, :, 9, 8
>, ?

• SR: + property chains, property characteristics,
role hierarchies v

• SRO: + nominals {o}
• SROI: + inverse properties
• SROIQ: + qualified cardinality constraints
• SROIQ(D): + datatypes (including facets)

• + top and bottom roles (for objects and datatypes)
• + disjoint properties
• + Self
• + Keys (not in SROIQ(D), but in OWL)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 29

Some Syntactic Sugar in OWL

This applies to the non-DL syntaxes (e.g. RDF syntax).

• disjoint classes
– Apple u Pear v ?

• disjoint union
– Parent ´ Mother t Father

Mother u Father v ?

• negative property assignments (also for datatypes)
– :hasAge(jack,"53"^^xsd:integer)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 30

Contents

• OWL – Basic Ideas
• OWL As the Description Logic SROIQ(D)
• Different Perspectives on OWL
• OWL Semantics
• OWL Profiles
• Proof Theory
• Tools

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 31

OWL – Extralogical Features

• OWL ontologies have URIs and can be referenced by others via
– import statements

• Namespace declarations
• Entity declarations (must be done)
• Versioning information etc.

• Annotations
– Entities and axioms (statements) can be endowed with

annotations, e.g. using rdfs:comment.
– OWL syntax provides annotation properties for this purpose.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 32

The modal logic perspective

• Description logics can be understood from a modal logic
perspective.

• Each pair of 8R and 9R statements give rise to a pair of
modalities.

• Essentially, some description logics are multi-modal logics.

• See e.g. Baader et al., The Description Logic Handbook,
Cambridge University Press, 2007.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

The RDFS perspective

• :mary rdf:type :Person .
• :Mother rdfs:subClassOf :Woman .
• :john :hasWife :Mary .
• :hasWife rdfs:subPropertyOf

:hasSpouse

• :hasWife rdfs:range :Woman .
• :hasWife rdfs:domain :Man .

• Person(mary)
• Mother v Woman
• hasWife(john,mary)
• hasWife v hasSpouse

• > v 8hasWife.Woman
• > v 8hasWife-.Man or

9hasWife.> v Man

RDFS also allows to
make statements about statements
! only possible through annotations in OWL
mix class names, individual names, property names (they are all URIs)
! punning in OWL

RDFS semantics is weaker

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 34

Punning

• Description logics impose type separation, i.e. names of
individuals, classes, and properties must be disjoint.

• In OWL 2 Full, type separation does not apply.

• In OWL 2 DL, type separation is relaxed, but a class X and an
individual X are interpreted semantically as if they were different.

• Father(john)
SocialRole(Father)

• See further below on the two different semantics for OWL.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 35

Contents

• OWL – Basic Ideas
• OWL As the Description Logic SROIQ(D)
• Different Perspectives on OWL
• OWL Semantics
• OWL Profiles
• Proof Theory
• Tools

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 36

OWL Semantics

• There are two semantics for OWL.

1. Description Logic Semantics
also: Direct Semantics; FOL Semantics
Can be obtained by translation to FOL.
Syntax restrictions apply! (see next slide)

2. RDF-based Semantics
No syntax restrictions apply.
Extends the direct semantics with RDFS-reasoning features.

In the following, we will deal with the direct semantics only.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 37

OWL Direct Semantics

To obtain decidability, syntactic restrictions apply.

• Type separation / punning

• No cycles in property chains.

• No transitive properties in cardinality restrictions.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 38

OWL Direct Semantics: Restrictions

arbitrary property chain axioms lead to undecidability
restriction: set of property chain axioms has to be regular

there must be a strict linear order ≺ on the properties
every property chain axiom has to have one of the following forms:

R o R v R S– v R S1 o S2 o ... o Sn v R
R o S1 o S2 o ... o Sn v R S1 o S2 o ... o Sn o R v R

thereby, Si ≺ R for all i= 1, 2, . . . , n.

Example 1: R o S v R S o S v S R o S o R v T
 regular with order S ≺ R ≺ T
Example 2: R o T o S v T
 not regular because form not admissible
Example 3: R o S v S S o R v R
 not regular because no adequate order exists

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 39

OWL Direct Semantics: Restrictions

combining property chain axioms and cardinality constraints
may lead to undecidability
restriction: use only simple properties in cardinality expressions
(i.e. those which cannot be – directly or indirectly – inferred from
property chains)
technically:

for any property chain axiom S1 o S2 o ... o Sn v R with n>1, R is non-
simple
for any subproperty axiom S v R with S non-simple, R is non-simple
all other properties are simple

Example: Q o P v R R o P v R R v S P v R Q v S
non-simple: R, S simple: P, Q

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL Direct Semantics

• model-theoretic semantics
• starts with interpretations
• an interpretation maps

individual names, class names and property names...

...into a domain

.I

aI CI

RI

Δ
II IC IR

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 41

Interpretation Example

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL Direct Semantics

• mapping is extended to complex class expressions:
– >I = ∆I ?I = ;
– (C u D)I = CI \ DI (C t D)I = CI [DI (:C)I = ∆I \ CI

– (8R.C)I = { x | for all (x,y) ∈ RI we have y ∈ CI}
(9R.C)I = { x | there is (x,y) ∈ RI with y ∈ CI}

– (≥nR.C)I = { x | #{ y | (x,y) ∈ RI and y ∈ CI} ≥ n }
– (≤nR.C)I = { x | #{ y | (x,y) ∈ RI and y ∈ CI} ≤ n }

• ...and to role expressions:
– UI = ∆I × ∆I (R–)I = { (y,x) | (x,y) ∈ RI }

• ...and to axioms:
– C(a) holds, if aI ∈ CI R(a,b) holds, if (aI,bI) ∈ RI

– C v D holds, if CI ⊆ DI R v S holds, if RI ⊆ SI

– Disjoint(R,S) holds if RI \ SI = ;
– S1 o S2 o ... o Sn v R holds if S1

I o S2
I o ... o Sn

I ⊆ RI

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL Direct Semantics

• mapping is extended to complex class expressions:
– >I = ∆I ?I = ;
– (C u D)I = CI \ DI (C t D)I = CI [DI (:C)I = ∆I \ CI

– (8R.C)I = { x | for all (x,y) ∈ RI we have y ∈ CI}
(9R.C)I = { x | there is (x,y) ∈ RI with y ∈ CI}

– (≥nR.C)I = { x | #{ y | (x,y) ∈ RI and y ∈ CI} ≥ n }
– (≤nR.C)I = { x | #{ y | (x,y) ∈ RI and y ∈ CI} ≤ n }

• ...and to role expressions:
– UI = ∆I × ∆I (R–)I = { (y,x) | (x,y) ∈ RI }

• ...and to axioms:
– C(a) holds, if aI ∈ CI R(a,b) holds, if (aI,bI) ∈ RI

– C v D holds, if CI ⊆ DI R v S holds, if RI ⊆ SI

– Disjoint(R,S) holds if RI \ SI = ;
– S1 o S2 o ... o Sn v R holds if S1

I o S2
I o ... o Sn

I ⊆ RI

• what’s below gives us a notion of model:

An interpretation is a model of a set of axioms if all the axioms
hold (are evaluated to true) in the interpretation.

• Notion of logical consequence obtained via models (below).

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 44

Logical Consequence

A model for an OWL KB is such a mapping I which satisfies all
axioms in the KB.

An axiom ® is a logical consequence
of a KB if every model of the KB is also
a model of ®.

The logical consequences of a KB are all those things which are
necessarily the case in all „realities“ in which the KB is the case.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 45

Notion of logical consequence

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 46

Not a model!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 47

A model

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 48

Models

Is FacultyMember(aifb) a logical consequence?

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 49

Counterexample

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 50

Logical Consequence

Is FacultyMember(rudiStuder) a logical consequence?

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL Direct Semantics via FOL

• but often OWL 2 DL is said to be a fragment of first-order
predicate logic (FOL) [with equality]...

• yes, there is a translation of OWL 2 DL into FOL

• ...which (interpreted under FOL semantics) coincides with the
definition just given.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 52

Inconsistency and Satisfiability

• A set of axioms (knowledge base) is satisfiable (or consistent) if
it has a model.

• It is unsatisfiable (inconsistent) if it does not have a model.

• Inconsistency is often caused by modeling errors.

• Unicorn(beauty)
Unicorn v Fictitious
Unicorn v Animal
Animal v :Fictitious

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 53

Inconsistency and Satisfiability

• A knowledge base is incoherent if a named class is equivalent to ?.

• It usually also points to a modeling error.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 54

A Semantic Puzzle

From Horridge, Parsia, Sattler, From Justifications to Proofs for
Entailments in OWL. In: Proceedings OWLED2009.
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-529/

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 55

What Semantics Is Good For

• Opinions Differ. Here’s my take.

• Semantic Web requires a shareable, declarative and computable
semantics.

• I.e., the semantics must be a formal entity which is clearly
defined and automatically computable.

• Ontology languages provide this by means of their formal
semantics.

• Semantic Web Semantics is given by a relation – the logical
consequence relation.

• Note: This is considerably more than saying that the semantics
of an ontology is the set of its logical consequences!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 56

In other words

We capture the meaning of information

not by specifying its meaning (which is impossible)
but by specifying

how information interacts with other information.

We describe the meaning indirectly through its effects.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 57

Simple Logical Reasoning

If I ask for soccer team
members, I also want to get

the goalkeepers listed ...

If I ask for cities, I also
want all capitals listed ...

inheritance reasoning

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 58

Less Simple Reasoning

What was again the name of
that russian researcher who
worked on resolution-based

calculi for EL?

Are lobsters spiders?

What is "Käuzchen"
in english?

answering requires
merging of knowledge
from many websites
and using background
knowledge.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 59

SNOMED CT

• SNOMED CT: commercial ontology, medical domain
ca. 300,000 axioms

• InjuryOfFinger ´ Injury u 9site.FingerS
InjuryOfHand ´ Injury u 9site.HandS
FingerS v HandP
HandP v HandS u 9part.HandE

• Reasoning has been used e.g. for
– classification (computing the hidden taxonomy)

e.g., InjuryOfFinger v InjuryOfHand
– bug finding

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 60

Contents

• OWL – Basic Ideas
• OWL As the Description Logic SROIQ(D)
• Different Perspectives on OWL
• OWL Semantics
• OWL Profiles
• Proof Theory
• Tools

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 61

OWL Profiles

• OWL Full – using the RDFS-based semantics
• OWL DL – using the FOL semantics

The OWL 2 documents describe further profiles, which are of
polynomial complexity:

• OWL EL (EL++)
• OWL QL (DL LiteR)
• OWL RL (DLP)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL 2 EL

• allowed:
– subclass axioms with intersection, existential

quantification, top, bottom
• closed classs must have only one member

– property chain axioms, range restrictions (under certain
conditions)

• disallowed:
– negation, disjunction, arbitrary universal quantification,

role inverses

u9>? v u9>?
• Examples: Human v 9hasParent.Person

9married.> u CatholicPriest v ?;
hasParent ± hasParent v hasGrandparent

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL 2 RL

• Motivated by the question: what fraction of OWL 2 DL can
be expressed naively by rules (with equality)?

• Examples:
– 9parentOf.9parentOf.> v Grandfather

rule version: parentOf(x,y) parentOf(y,z) ! Grandfather(x)
– Orphan v 8hasParent.Dead

rule version: Orphan(x) hasParent(x,y) ! Dead(y)
– Monogamous v ≤1married.Alive

rule version:
Monogamous(x) married(x,y) Alive(y) married(x,z)
Alive(z)! y=z

– childOf ± childOf v grandchildOf
rule version: childOf(x,y) childOf(y,z) ! grandchildOf(x,z)

– Disj(childOf,parentOf)
rule version: childOf(x,y) parentOf(x,y) !

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL 2 RL

• Syntactic characterization:
– essentially, all axiom types are allowed
– disallow certain constructors on lhs and rhs of

subclass statements

8 : v 9 t
– cardinality restrictions: only on rhs and only ≤1 and

≤0 allowed
– closed classes: only with one member

• Reasoner conformance requires only soundness.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL 2 QL

• Motivated by the question: what fraction of OWL 2
DL can be captured by standard database
technology?

• Formally: query answering LOGSPACE w.r.t. data
(via translation into SQL)

• Allowed:
– subproperties, domain, range
– subclass statements with

• left hand side: class name or expression of type 9r.>
• right hand side: intersection of class names, expressions of

type 9r.C and negations of lhs expressions
• no closed classes!

• Example:
9married.> v :Free u 9has.Sorrow

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 66

Contents

• OWL – Basic Ideas
• OWL As the Description Logic SROIQ(D)
• Different Perspectives on OWL
• OWL Semantics
• OWL Profiles
• Proof Theory
• Tools

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 67

A Reasoning Problem

A is a logical consequence of K
written K ² A

if and only if
every model of K is a model of A.

• To show an entailment, we need to check all models?
• But that‘s infinitely many!!!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 68

A Reasoning Problem

We need algorithms which do not apply the model-based
definition of logical consequence in a naive manner.

These algorithms should be syntax-based.
(Computers can only do syntax manipulations.)

Luckily, such algorithms exist!

However, their correctness (soundness and completeness)
needs to be proven formally.
Which is often a non-trivial problem requiring substantial
mathematical build-up.

We won‘t do the proofs here.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 69

Proof Theory

We will show the Tableaux Method – implemented, e.g., in Pellet
and Racer.

Alternatives:
• Transformation to disjunctive datalog using basic superposition

done for SHIQ
• Naive mapping to Datalog

for OWL RL
• Mapping to SQL

for OWL QL
• Special-purpose algorithms for OWL EL

e.g. transformation to Datalog

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 70

Proof theory Via Tableaux

• Adaptation of FOL tableaux algorithms.

• Problem: OWL is decidable, but FOL tableaux algorithms do not
guarantee termination.

• Solution: blocking.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 71

Contents

• Important inference problems
• Tableaux algorithm for ALC
• Tableaux algorithm for SHIQ

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 72

Important Inference Problems

• Global consistency of a knowledge base. KB ² false?
– Is the knowledge base meaningful?

• Class consistency C ´ ??
– Is C necessarily empty?

• Class inclusion (Subsumption) C v D?
– Structuring knowledge bases

• Class equivalence C ´ D?
– Are two classes in fact the same class?

• Class disjointness C u D = ??
– Do they have common members?

• Class membership C(a)?
– Is a contained in C?

• Instance Retrieval „find all x with C(x)“
– Find all (known!) individuals belonging to a given class.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 73

Reduction to Unsatisfiability

• Global consistency of a knowledge base. KB unsatisfiable
– Failure to find a model.

• Class consistency C ´ ??
– KB [{C(a)} unsatisfiable

• Class inclusion (Subsumption) C v D?
– KB [{C u :D(a)} unsatisfiable (a new)

• Class equivalence C ´ D?
– C v D und D v C

• Class disjointness C u D = ??
– KB [{(C u D)(a)} unsatisfiable (a new)

• Class membership C(a)?
– KB [{:C(a)} unsatisfiable

• Instance Retrieval „find all x with C(x)“
– Check class membership for all individuals.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 74

Reduction to Satisfiability

• We will present so-called tableaux algorithms.

• They attempt to construct a model of the knowledge base
in a „general, abstract“ manner.
– If the construction fails, then (provably) there is no model –

i.e. the knowledge base is unsatisfiable.
– If the construction works, then it is satisfiable.

! Hence the reduction of all inference problems to the checking of
unsatisfiability of the knowledge base!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 75

Contents

• Important inference problems
• Tableaux algorithm for ALC
• Tableaux algorithm for SHIQ

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 76

ALC tableaux: contents

• Transformation to negation normal form
• Naive tableaux algorithm
• Tableaux algorithm with blocking

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 77

Transform. to negation normal form

Given a knowledge base K.

• Replace C ´ D by C v D and D v C.
• Replace C v D by :C t D.
• Apply the equations on the next slide exhaustively.

Resulting knowledge base: NNF(K)
Negation normal form of K.
Negation occurs only directly in front of atomic classes.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 78

K and NNF(K) have the same models (are logically equivalent).

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 79

Example

P v (E u U) t :(:E t D).

In negation normal form:

:P t (E u U) t (E u :D).

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 80

ALC tableaux: contents

• Transformation to negation normal form
• Naive tableaux algorithm
• Tableaux algorithm with blocking

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 81

Naive tableaux algorithm

Reduction to (un)satisfiability.

Idea:
• Given knowledge base K
• Attempt construction of a tree (called Tableau), which

represents a model of K.
(It‘s actually rather a Forest.)

• If attempt fails, K is unsatisfiable.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 82

The Tableau

• Nodes represent elements of the domain of the model
! Every node x is labeled with a set L(x) of class expressions.
C 2 L(x) means: "x is in the extension of C"

• Edges stand for role relationships:
! Every edge <x,y> is labeled with a set L(<x,y>) of role names.
R 2 L(<x,y>) means: "(x,y) is in the extension of R"

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 83

Simple example

C(a)
C v 9R.D
D v E

Does this entail
(9R.E)(a)?

(add 8R.:E(a)
and show
unsatisfiability)

a

x

R

C
9R.D
8R.:E

D
E
:E (because 8R.:E(a))
Contradiction!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 84

Another example

C(a)
C v 9R.D
D v E t F
F v E

Does this entail
(9R.E)(a)?

(add 8R.:E(a)
and show
unsatisfiability)

a

x

R

C
9R.D
8R.:E

D
:E (because 8R.:E(a))
choice: (D v E t F):
1. E (contradiction!)
2. F

E (contradiction!)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 85

Formal Definition

• Input: K=TBox + ABox (in NNF)
• Output: Whether or not K is satisfiable.

• A tableau is a directed labeled graph
– nodes are individuals or (new) variable names
– nodes x are labeled with sets L(x) of classes
– edges <x,y> are labeled with sets L(<x,y>) of role names

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 86

Initialisation

• Make a node for every individual in the ABox.
• Every node is labeled with the corresponding class names from

the ABox.
• There is an edge, labeled with R, between a and b, if R(a,b) is in

the ABox.

• (If there is no ABox, the initial tableau consists of a node x with
empty label.)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 87

Example initialisation

Human v 9hasParent.Human
Orphan v Human u :9hasParent.Alive
Orphan(harrypotter)
hasParent(harrypotter,jamespotter)

harrypotter

jamespotter

Orphan

<nothing>

hasParent

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 88

Careful: need NNF!

:Human t 9hasParent.Human
:Orphan t (Human u 8hasParent.:Alive)
Orphan(harrypotter)
hasParent(harrypotter,jamespotter)

harrypotter

jamespotter

Orphan

<nothing>

hasParent

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 89

Constructing the tableau

• Non-deterministically extend the tableau using the rules on the
next slide.

• Terminate, if
– there is a contradiction in a node label (i.e., it contains

classes C and :C, or it contains ?), or
– none of the rules is applicable.

• If the tableau does not contain a contradiction, then the
knowledge base is satisfiable.
Or more precisely: If you can make a choice of rule applications
such that no contradiction occurs and the process terminates,
then the knowledge base is satisfiable.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 90

Naive ALC tableaux rules

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 91

Example

:Human t 9hasParent.Human
:Orphan t (Human u 8hasParent.:Alive)
Orphan(harrypotter)
hasParent(harrypotter,jamespotter)

harrypotter

jamespotter

:Orphan t (Human u 8hasParent.:Alive)
1. :Orphan (contradiction)
2. Human u 8hasParent.:Alive

Human
8hasParent.:Alive

Alive

hasParent

:Alive(jamespotter)
i.e. add: Alive(jamespotter)

and search for contradiction

2. :Alive (contradiction)

Orphan

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 92

ALC tableaux: contents

• Transformation to negation normal form
• Naive tableaux algorithm
• Tableaux algorithm with blocking

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 93

There‘s a termination problem

TBox: 9R.>
ABox: >(a1)
• Obviously satisfiable:

Model M with domain elements a1
M,a2

M,...
and RM(ai

M,ai+1
M) for all i ¸ 1

• but tableaux algorithm does not terminate!

a1 x y

>
9R.>

>
9R.>

>
9R.>

R R R

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 94

Solution?

Actually, things repeat!
Idea: it is not necessary to expand x, since it‘s simply a copy of a.

) Blocking

a x y

>
9R.>

>
9R.>

>
9R.>

R R R

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 95

Blocking

• x is blocked (by y) if
– x is not an individual (but a variable)
– y is a predecessor of x and L(x) µ L(y)
– or a predecessor of x is blocked

Here, x is blocked by a.

a x y

>
9R.>

>
9R.>

>
9R.>

R R R

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 96

Constructing the tableau

• Non-deterministically extend the tableau using the rules on the
next slide, but only apply a rule if x is not blocked!

• Terminate, if
– there is a contradiction in a node label (i.e., it contains

classes C and :C), or
– none of the rules is applicable.

• If the tableau does not contain a contradiction, then the
knowledge base is satisfiable.
Or more precisely: If you can make a choice of rule applications
such that no contradiction occurs and the process terminates,
then the knowledge base is satisfiable.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 97

Naive ALC tableaux rules

Apply only if x is not blocked!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 98

Example (0)

• Knowledge base {Human v 9hasParent.Human, Bird(tweety)}
• We want to show that Human(tweety) does not hold,

i.e. that :Human(tweety) is entailed.
• We will not be able to show this.

I.e. Human(tweety) is possible.

• Shorter notation:
H v 9p.H
B(t)

:H(t) entailed?

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 99

Example (0)

Knowledge base {:H t 9p.H, B(t), H(t)}

expansion stops. Cannot find contradiction!

t

H
B
:H t 9p.H
1. :H (contradiction)
2. 9p.H

x

2.:
H
blocked by t!

p

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 100

Example (0) the other case

Knowledge base {:H t 9p.H, B(t), :H(t)}

no further expansion possible – knowledge base is satisfiable!

t

:H
B
:H t 9p.H
1. :H cannot be

added. no expansion
in this part

2. 9p.H

x

2.:
H
:H t 9p.H
2.1: :H (contradiction)
2.2: 9p.H

y

2.2:
H
blocked by x

p p

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 101

Example(1)

Show, that
Professor v (Person u Unversitymember)

t (Person u :PhDstudent)
entails that every Professor is a Person.

Find contradiction in:
:P t (E u U) t (E u :S)
P u :E(x)

x

P u :E
P
:E
:P t (E u U) t (E u :S)
1. :P (contradiction)
2. (E u U) t (E u :S)

1. E u U
E (contradiction)

2. E u :S
E (contradiction)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 102

Example (2)

Show that
hasChild(john, peter)
hasChild(john, paul)
male(peter)
male(paul)

does not entail 8hasChild.male(john).

john peter

paulx

hasChild

hasChildhasChild

9hasChild.:male

:8hasChild.male ≡ 9hasChild.:male

male

male
:male

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 103

Example (3)

Show that the knowledge base
Bird v Flies
Penguin v Bird
Penguin u Flies v ?
Penguin(tweety)

is unsatisfiable.

TBox:
:B t F
:P t B
:P t :F t ?

tweety

P
:P t B
:B t F
:P t :F
1. :P (contradiction)
2. B

1. :B (contradiction)
2. F

1. :P (contradiction)
2. :F (contradiction)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 104

Example (4)

Show that the knowledge base
C(a) C(c)
R(a,b) R(a,c)
S(a,a) S(c,b)
C v 8S.A
A v 9R.9S.A
A v 9R.C

entails 9R.9R.9S.A(a).

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 105

Example (4)

a b

c

x y

TBox:
:C t 8S.A
:A t 9R.9S.A
:A t 9R.C

C
8R.8R.8S.:A

A
8R.8S.:A
:A t 9R.9S.A

9S.A
8S.:A

A
:A

C
:C t 8S.A

R

R

SS

R S

:9R.9R.9S.A ≡ 8R.8R.8S.:A

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 106

Contents

• Important inference problems
• Tableaux algorithm for ALC
• Tableaux algorithm for SHIQ

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 107

Tableaux Algorithm for SHIQ

• Basic idea is the same.

• Blocking rule is more complicated

• Other modifictions are also needed.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 108

Transform. to negation normal form

Given a knowledge base K.

• Replace C ´ D by C v D and D v C.
• Replace C v D by :C t D.
• Apply the equations on the next slide exhaustively.

Resulting knowledge base: NNF(K)
Negation normal form of K.
Negation occurs only directly in front of atomic classes.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 109

NNF(·n R.C) = ·n R.NNF(C)
NNF(¸n R.C) = ¸n R.NNF(C)
NNF(: ·n R.C) = ¸(n+1)R.NNF(C)
NNF(: ¸n R.C) = ·(n-1)R.NNF(C), where ·(-1)R.C = ?

K and NNF(K) have the same models (are logically equivalent).

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 110

Formal Definition

• A tableau is a directed labeled graph
– nodes are individuals or (new) variable names
– nodes x are labeled with sets L(x) of classes
– edges <x,y> are labeled

• either with sets L(<x,y>) of role names or inverse role
names

• or with the symbol = (for equality)
• or with the symbol ≠ (for inequality)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 111

Initialisation

• Make a node for every individual in the ABox. These nodes are
called root nodes.

• Every node is labeled with the corresponding class names from
the ABox.

• There is an edge, labeled with R, between a and b, if R(a,b) is in
the ABox.

• There is an edge, labeled ≠, between a and b if a ≠ b is in the
ABox.

• There are no = relations (yet).

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 112

Notions

• We write S-- as S.
• If R 2 L(<x,y>) and R v S (where R,S can be inverse roles), then

– y is an S-successor of x and
– x is an S-predecessor of y.

• If y is an S-successor or an S--predecessor of x, then y is an
neighbor of x.

• Ancestor is the transitive closure of Predecessor.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 113

Blocking for SHIQ

• x is blocked by y if x,y are not root nodes and
– the following hold: ["x is directly blocked"]

• no ancestor of x is blocked
• there are predecessors y', x' of x
• y is a successor of y' and x is a successor of x'
• L(x) = L(y) and L(x') = L(y')
• L(<x',x>) = L(<y',y>)

– or the following holds: ["x is indirectly blocked"]
• an ancestor of x is blocked or
• x is successor of some y with L(<y,x>) = ;

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 114

Constructing the tableau

• Non-deterministically extend the tableau using the rules on the
next slide.

• Terminate, if
– there is a contradiction in a node label, i.e.,

• it contains ? or classes C and :C or
• it contains a class · nR.C and

x also has (n+1) R-successors yi and yi≠ yj (for all i ≠ j)
– or none of the rules is applicable.

• If the tableau does not contain a contradiction, then the
knowledge base is satisfiable.
Or more precisely: If you can make a choice of rule applications
such that no contradiction occurs and the process terminates,
then the knowledge base is satisfiable.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 115

SHIQ Tableaux Rules

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 116

SHIQ Tableaux Rules

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 117

SHIQ Tableaux Rules

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 118

Example (1): cardinalities

Show, that
hasChild(john, peter)
hasChild(john, paul)
male(peter)
male(paul)
·2hasChild.>(john)

does not entail 8hasChild.male(john).

john peter

paulx

hasChild

hasChild
hasChild

9hasChild.:male
·2hasChild.>

:8hasChild.male ≡ 9hasChild.:male

male

male
:male

now apply ·
=

:male

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 119

Example (1): cardinalities

Show, that
hasChild(john, peter)
hasChild(john, paul)
male(peter)
male(paul)
·2hasChild.>(john)

does not entail 8hasChild.male(john).

john peter

paulx

hasChild

hasChild
hasChild

9hasChild.:male
·2hasChild.>

:8hasChild.male ≡ 9hasChild.:male

male

male
:male

now apply ·
=

backtracking!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 120

Example (1): cardinalities – again

Show, that
hasChild(john, peter)
hasChild(john, paul)
male(peter)
male(paul)
·2hasChild.>(john) and peter ≠ paul

does not entail 8hasChild.male(john).

john peter

paulx

hasChild

hasChild
hasChild

9hasChild.:male
·2hasChild.>

:8hasChild.male ≡ 9hasChild.:male

male

male
:male

now apply ·
=

:male

≠

can backtrack only between x
and peter – also leads to
contradiction

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 121

Example (2): cardinalities

Show, that
¸2hasSon.>(john) hasSon v hasChild

entails ¸2hasChild.>(john).

john

yx

hasSon
hasSon

¸2hasSon.>
·1hasChild.>

:¸2hasSon.> ≡ ·1hasChild.>

≠

hasSon-neighbors are also hasChild-neighbors,
tableau terminates with contradiction

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 122

Example (3): choose

¸3hasSon(john)
·2hasSon.male(john)
Is this contradictory?

No, because the following tableau is complete.

john¸3hasSon
·2hasSon.male

x

y

z

hasSon

hasSon

hasSon
≠

≠
≠

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 123

Example (4): inverse roles

9hasChild.human(john)
human v 8hasParent.human
hasChild v hasParent-
zu zeigen: human(john)

john is hP--predecessor of x, hence hP-neighbor of x

john xhasChild9hasChild.human
:human

human
:human t 8hasParent.human

human

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 124

Example (5): Transitivity and Blocking

human v 9hasFather.>
human v 8hasAncestor.human
hasFather v hasAncestor Trans(hasAncestor)
human(john)

Does this entail ·1hasFather.>(john)?
Negation: ¸2hasFather.>(john)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 125

Example (5): Transitivity and Blocking

human v 9hasFather.>
hasFather v hasAncestor Trans(hasAncestor)
8hasAncestor.human(john)
human(john) ¸2hasFather.>(john)

john

x x1

y

h
¸2hF.>
8hA.h
:h t 9hF.>

hF

hF

hF

same as branch above

x2

...

h
:h t 9hF.>
8hA.h

hF

x2 now blocked by x1 :
Pair (x1,x2) repeats (x,x1)

h
:h t 9hF.>
8hA.h

h
:h t 9hF.>
8hA.h

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 126

Example (6): Pairwise Blocking

:C u (·1F) u 9F-.D u 8R-.(9F-.D), where
D = C u (·1F) u 9F.:C, Trans(R), and F v R,
is not satisfiable.

x y z

:C
·1F
9F-.D
8R-.(9F-.D)

D
9F-.D
8R-.(9F-.D)
C
·1F
9F.:C

F- F-

D
9F-.D
8R-.(9F-.D)
C
·1F
9F.:C

Without pairwise blocking, z would be blocked, which shouldn‘t happen:
Expansion of 9F.:C yields :C for node y as required.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 127

Example (7): Dynamic Blocking

A u 9S.(9R.> u 9P.> u 8R.C u8P.(9R.>) u 8P.(8R.C) u 8P.(9P.>))
with C = 8R-.(8P-.(8S-.:A)) and Trans(P), is not satisfiable.

Part of the tableau:

x y v

z w

A
...

9R.>
9P.>
8R.C
8P.(9R.>)
8P.(9P.>)
8P.(8R.C)

S

P

R

R

C

L(y)

At this stage, z would be blocked by y (assuming the presence of another pair).
However, when C from v is expanded, z becomes unblocked, which is
necessary in order to label w with C which in turn labels x with :A, yielding
the required contradiction.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 128

Tableaux Reasoners

• Fact++
– http://owl.man.ac.uk/factplusplus/

• Pellet
– http://www.mindswap.org/2003/pellet/index.shtml

• RacerPro
– http://www.sts.tu-harburg.de/~r.f.moeller/racer/

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 129

Contents

• OWL – Basic Ideas
• OWL As the Description Logic SROIQ(D)
• Different Perspectives on OWL
• OWL Semantics
• OWL Profiles
• Proof Theory
• Tools

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 130

OWL tools (incomplete listing)

Reasoner:
• OWL 2 DL:

– Pellet http://clarkparsia.com/pellet/
– HermiT http://www.hermit-reasoner.com/

• OWL 2 EL:
– CEL http://code.google.com/p/cel/

• OWL 2 RL:
– essentially any rule engine

• OWL 2 QL:
– essentially any SQL engine (with a bit of query rewriting on

top)
Editors:
• Protégé
• NeOn Toolkit
• TopBraid Composer

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 131

Main References

• W3C OWL Working Group, OWL 2 Web Ontology Language:
Document Overview. http://www.w3.org/TR/owl2-overview/

• Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter Patel-
Schneider, Sebastian Rudolph, OWL 2 Web Ontology Language:
Primer. http://www.w3.org/TR/owl2-primer/

• Franz Baader, Diego Calvanese, Deborah L. McGuinness,
Daniele Nardi, Peter F. Patel-Schneider, The Description Logic
Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2nd edition, 2007.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 132

Main References – Textbooks

• Pascal Hitzler, Markus Krötzsch,
Sebastian Rudolph, York Sure,
Semantic Web – Grundlagen.
Springer, 2008.
http://www.semantic-web-grundlagen.de/
(In German.)
(Does not cover OWL 2.)

• Pascal Hitzler, Markus Krötzsch,
Sebastian Rudolph,
Foundations of Semantic Web Technologies.
Chapman & Hall/CRC, 2009.
http://www.semantic-web-book.org/wiki/FOST
(Ask for a flyer from us.)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 133

Further References

• DL complexity calculator: http://www.cs.man.ac.uk/~ezolin/dl/

• Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, Description
Logic Rules. In Malik Ghallab, Constantine D. Spyropoulos,
Nikos Fakotakis, Nikos Avouris, eds.: Proceedings of the 18th
European Conference on Artificial Intelligence (ECAI-08), pp. 80–
84. IOS Press 2008.

• Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, ELP:
Tractable Rules for OWL 2. In: Amit Sheth, Steffen Staab, Mike
Dean, Massimo Paolucci, Diana Maynard, Timothy Finin,
Krishnaprasad Thirunarayan (eds.), The Semantic Web - ISWC
2008, 7th International Semantic Web Conference. Springer
Lecture Notes in Computer Science Vol. 5318, 2008, pp. 649-664.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 134

Thanks!

http://www.semantic-web-book.org/page/ISWC2010_Tutorial

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 135

OWL 2 and Rules
–

Optional Part, If Enough Time

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 136

Main References Optional Part

Main References:
• Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, Description

Logic Rules. In Malik Ghallab, Constantine D. Spyropoulos, Nikos
Fakotakis, Nikos Avouris, eds.: Proceedings of the 18th European
Conference on Artificial Intelligence (ECAI-08), pp. 80–84. IOS
Press 2008.

• Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, ELP: Tractable
Rules for OWL 2. In Amit Sheth, Steffen Staab, Mike Dean,
Massimo Paolucci, Diana Maynard, Timothy Finin, Krishnaprasad
Thirunarayan, eds.: Proceedings of the 7th International Semantic
Web Conference (ISWC-08), pp. 649–664. Springer 2008.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 137

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 138

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 139

Motivation: OWL and Rules

• Rules (mainly, logic programming) as alternative ontology
modelling paradigm.

• Similar tradition, and in use in practice (e.g. F-Logic)

• Ongoing: W3C RIF working group
– Rule Interchange Format
– based on Horn-logic
– language standard forthcoming 2009

• Seek: Integration of rules paradigm with ontology paradigm
– Here: Tight Integration in the tradition of OWL
– Foundational obstacle: reasoning efficiency / decidability

[naive combinations are undecidable]

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 140

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 141

Preliminaries: Datalog

• Essentially Horn-rules without function symbols

general form of the rules:

p1(x1,...,xn) Æ ...Æ pm(y1,...,yk) ! q(z1,...,zj)

semantics either as in predicate logic
or as Herbrand semantics (see next slide)

• decidable
• polynomial data complexity (in number of facts)
• combined (overall) complexity: ExpTime
• combined complexity is P if the number of variables per rule is

globally bounded

body ! head

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

Datalog semantics example

• Example:
p(x) ! q(x)
q(x) ! r(x)

! p(a)

• predicate logic semantics:

(8x) (p(x) ! r(x))
and
(8x) (:r(x) ! :p(x))
are logical consequences

q(a) and r(a)
are logical consequences

• Herbrand semantics

those on the left are not logical
consequences

q(a) and r(a)
are logical consequences

material implication:
apply only to known constants

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 143

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 144

More rules than you ever need: SWRL

• Union of OWL DL with (binary) function-free Horn rules
(with binary Datalog rules)

• undecidable
• no native tools available

• rather an overarching formalism

• see http://www.w3.org/Submission/SWRL/

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 145

SWRL example (running example)

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 146

SWRL example (running example)

Conclusions:
dislikes(sebastian,peanutOil)

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 147

SWRL example (running example)

Conclusions:
dislikes(sebastian,peanutOil)
Conclusions:
dislikes(sebastian,peanutOil)
orderedDish(sebastian,ys)
ThaiCurry(ys)
Dish(ys)

orderedDish rdfs:range Dish.

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 148

SWRL example (running example)

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusions:
dislikes(sebastian,peanutOil)
Conclusions:
dislikes(sebastian,peanutOil)
orderedDish(sebastian,ys)
ThaiCurry(ys)
Dish(ys)

contains(ys,peanutOil)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 149

SWRL example (running example)

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusions:
dislikes(sebastian,peanutOil)
Conclusions:
dislikes(sebastian,peanutOil)
orderedDish(sebastian,ys)
ThaiCurry(ys)
Dish(ys)

contains(ys,peanutOil)
dislikes(sebastian,ys)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 150

SWRL example (running example)

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusions:
dislikes(sebastian,peanutOil)
Conclusions:
dislikes(sebastian,peanutOil)
orderedDish(sebastian,ys)
ThaiCurry(ys)
Dish(ys)

contains(ys,peanutOil)
dislikes(sebastian,ys)
Unhappy(sebastian)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 151

SWRL example (running example)

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusion: Unhappy(sebastian)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 152

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 153

Retaining decidability I: DL-safety

• Reinterpret SWRL rules:
Rules apply only to individuals which are explicitly given in the
knowledge base.
– Herbrand-style way of interpreting them

• OWL DL + DL-safe SWRL is decidable
• Native support e.g. by KAON2 and Pellet

• See e.g. Boris Motik, Ulrike Sattler, and Rudi Studer. Query
Answering for OWL-DL with Rules. Journal of Web Semantics
3(1):41–60, 2005.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 154

DL-safe SWRL example

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Unhappy(sebastian) cannot be concluded

{DL-safe

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 155

DL-safe SWRL example

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusions:
dislikes(sebastian,peanutOil)
Conclusions:
dislikes(sebastian,peanutOil)
orderedDish(sebastian,ys)
ThaiCurry(ys)
Dish(ys)

contains(ys,peanutOil)
dislikes(sebastian,ys)

{DL-safe

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 156

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 157

Retaining decidability II: DL Rules

• General idea:
Find out which rules can be encoded in OWL (2 DL) anyway

• Man(x) Æ hasBrother(x,y) Æ hasChild(y,z) ! Uncle(x)
– Man u 9hasBrother.9hasChild.> v Uncle

• ThaiCurry(x) ! 9contains.FishProduct(x)
– ThaiCurry v 9contains.FishProduct

• kills(x,x) ! suicide(x) suicide(x) ! kills(x,x)
– 9kills.Self v suicide suicide v 9kills.Self

Note: with these two axioms,
suicide is basically the same as kills

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 158

DL Rules: more examples

• NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
– NutAllergic ≡ 9nutAllergic.Self

NutProduct ≡ 9nutProduct.Self
nutAllergic o U o nutProduct v dislikes

• dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)
– Dish ≡ 9dish.Self

dislikes o contains– o dish v dislikes

• worksAt(x,y) Æ University(y) Æ supervises(x,z) Æ PhDStudent(z)
! professorOf(x,z)

– 9worksAt.University ≡ 9worksAtUniversity.Self
PhDStudent ≡ 9phDStudent.Self
worksAtUniversity o supervises o phDStudent v professorOf

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 159

DL Rules: definition

• Tree-shaped bodies
• First argument of the conclusion is the root

• C(x) Æ R(x,a) Æ S(x,y) Æ D(y) Æ T(y,a) ! E(x)
– C u 9R.{a} u 9S.(D u 9T.{a}) v E

duplicating
nominals

is
okE E

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 160

DL Rules: definition

• Tree-shaped bodies
• First argument of the conclusion is the root

• C(x) Æ R(x,a) Æ S(x,y) Æ D(y) Æ T(y,a) ! V(x,y)

C u 9R.{a} v 9R1.Self
D u 9T.{a} v 9R2.Self
R1 o S o R2 v V

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 161

DL Rules: definition

• Tree-shaped bodies
• First argument of the conclusion is the root

• complex classes are allowed in the rules

– Mouse(x) Æ 9hasNose.TrunkLike(y) ! smallerThan(x,y)

– ThaiCurry(x) ! 9contains.FishProduct(x)

Note: This allows to reason with unknowns (unlike Datalog)

– allowed class constructors depend on the chosen underlying
description logic!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 162

DL Rules: definition

Given a description logic D,
the language D Rules consists of
• all axioms expressible in D,
• plus all rules with

– tree-shaped bodies, where
– the first argument of the conclusion is the root, and
– complex classes from D are allowed in the rules.
– <plus possibly some restrictions concerning e.g. the use of

simple roles – depending on D>

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 163

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 164

The rules hidden in OWL 2: SROIQ Rules

• N2ExpTime complete

• In fact, SROIQ Rules can be translated into SROIQ
i.e. they don't add expressivity.

Translation is polynomial.

• SROIQ Rules are essentially helpful syntactic sugar for OWL 2.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 165

SROIQ Rules example

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

!not a SROIQ Rule!

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 166

SROIQ Rules normal form

• Each SROIQ Rule can be written ("linearised") such that
– the body-tree is linear,
– if the head is of the form R(x,y), then y is the leaf of the tree,

and
– if the head is of the form C(x), then the tree is only the root.

• worksAt(x,y) Æ University(y) Æ supervises(x,z) Æ PhDStudent(z)
! professorOf(x,z)

– 9worksAt.University(x) Æ supervises(x,z) Æ PhDStudent(z)
! professorOf(x,z)

• C(x) Æ R(x,a) Æ S(x,y) Æ D(y) Æ T(y,a) ! V(x,y)
– (C u 9R.{a})(x) Æ S(x,y) Æ (D u 9T.{a})(y) ! V(x,y)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 167

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 168

Retaining tractability I: OWL 2 EL Rules

• EL++ Rules are PTime complete

• EL++ Rules offer expressivity which is not readily available in
EL++.

OWL 2 EL

OWL 2
= SROIQ Rules

OWL 2 EL Rules

>ExpTime

tractable

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 169

OWL 2 EL Rules: normal form

• Every EL++ Rule can be converted into a normal form,where
– occurring classes in the rule body are either atomic or

nominals,
– all variables in a rule's head occur also in its body, and
– rule heads can only be of one of the forms A(x), 9R.A(x),

R(x,y), where A is an atomic class or a nominal or > or ?.

• Translation is polynomial.

• 9worksAt.University(x) Æ supervises(x,z) Æ PhDStudent(z)
! professorOf(x,z)

– worksAt(x,y) Æ University(y) Æ supervises(x,z) Æ
PhDStudent(z)

! professorOf(x,z)

• ThaiCurry(x) ! 9contains.FishProduct(x)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 170

OWL 2 EL Rules in a nutshell

Essentially, OWL 2 EL Rules is

• Binary Datalog with tree-shaped rule bodies,
• extended by

– occurrence of nominals as atoms and
– existential class expressions in the head.

• The existentials really make the difference.

• Arguably the better alternative to OWL 2 EL (aka EL++)?
– (which is covered anyway)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 171

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 172

Retaining tractability II: DLP 2

• DLP 2 is
– DLP (aka OWL 2 RL) extended with
– DL rules, which use

• left-hand-side class expressions in the bodies and
• right-hand-side class expressions in the head.

• Polynomial transformation into 5-variable Horn rules.

• PTime.

• Quite a bit more expressive than DLP / OWL 2 RL ...

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 173

Contents

• Motivation: OWL and Rules
• Preliminaries: Datalog

• More rules than you ever need: SWRL
• Retaining decidability I: DL-safety
• Retaining decidability II: DL Rules

• The rules hidden in OWL 2: SROIQ Rules
• Retaining tractability I: OWL 2 EL Rules
• Retaining tractability II: DLP 2

• Retaining tractability III: ELP
putting it
all together

Extending
OWL

with Rules

Rules
inside OWL

Intro

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 174

Retaining tractability III: ELP

Putting it all together:

• ELP is
– OWL 2 EL Rules +
– a generalisation of DL-safety +
– variable-restricted DL-safe Datalog +
– role conjunctions (for simple roles).

• PTime complete.
• Contains OWL 2 EL and OWL 2 RL.
• Covers variable-restricted Datalog.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 175

DL-safe variables

• A generalisation of DL-safety.
• DL-safe variables are special variables which bind only to named

individuals (like in DL-safe rules).
• DL-safe variables can replace individuals in EL++ rules.

• C(x) Æ R(x,xs) Æ S(x,y) Æ D(y) Æ T(y,xs) ! E(x)
with xs a safe variable is allowed, because

C(x) Æ R(x,a) Æ S(x,y) Æ D(y) Æ T(y,a) ! E(x)
is an EL++ rule.

duplicating
nominals

is
okE E

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 176

Variable-restricted DL-safe Datalog

• n-Datalog is Datalog, where the number of variables occurring in
rules is globally bounded by n.

• complexity of n-Datalog is PTime (for fixed n)
– (but exponential in n)

• in a sense, this is cheating.
• in another sense, this means that using a few DL-safe Datalog

rules together with an EL++ rules knowledge base shouldn't
really be a problem in terms of reasoning performance.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 177

Role conjunctions

• orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

• In fact, role conjunctions can also be added to OWL 2 DL without
increase in complexity.

• Sebastian Rudolph, Markus Krötzsch, Pascal Hitzler, Cheap Boolean
Role Constructors for Description Logics. In: Steffen Hölldobler and
Carsten Lutz and Heinrich Wansing (eds.), Proceedings of 11th
European Conference on Logics in Artificial Intelligence (JELIA),
volume 5293 of LNAI, pp. 362-374. Springer, September 2008.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 178

Retaining tractability III: ELP

• ELPn is
– OWL 2 EL Rules generalised by DL-safe variables +

– DL-safe Datalog rules with at most n variables +
– role conjunctions (for simple roles).

• PTime complete (for fixed n).
– exponential in n

• Contains OWL 2 EL and OWL 2 RL.
• Covers all Datalog rules with at most n variables. (!)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 179

ELP example

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

not an EL++ rule

[okay]

[okay – role conjunction]

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 180

ELP example

• dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)
as SROIQ rule translates to

Dish ≡ 9dish.Self
dislikes o contains– o dish v dislikes

but we don't have inverse roles in ELP!

• solution: make z a DL-safe variable:

dislikes(x,!z) Æ Dish(y) Æ contains(y,!z) ! dislikes(x,y)

this is fine 

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 181

DL-safe SWRL example

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,!z) Æ Dish(y) Æ contains(y,!z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusions:
dislikes(sebastian,peanutOil)
Conclusions:
dislikes(sebastian,peanutOil)
orderedDish(sebastian,ys)
ThaiCurry(ys)
Dish(ys)

contains(ys,peanutOil)
dislikes(sebastian,ys)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 182

ELP example

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,!z) Æ Dish(y) Æ contains(y,!z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusion: Unhappy(sebastian)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 183

ELP Reasoner ELLY

• Implementation currently being finalised.
• Based on IRIS Datalog reasoner.
• In cooperation with STI Innsbruck (Barry Bishop, Daniel Winkler,

Gulay Unel).

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 184

The Big Picture

ELP

OWL 2 EL

OWL 2
= SROIQ Rules

OWL 2 EL Rules

>ExpTime

tractable

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 185

Closed World and ELP

• There's an extension of ELP using (non-monotonic) closed-
world reasoning – based on a well-founded semantics for hybrid
MKNF knowledge bases.

• Matthias Knorr, Jose Julio Alferes, Pascal Hitzler, A Coherent Well-
founded model for Hybrid MKNF knowledge bases. In: Malik Ghallab,
Constantine D. Spyropoulos, Nikos Fakotakis, Nikos Avouris (eds.),
Proceedings of the 18th European Conference on Artificial
Intelligence, ECAI2008, Patras, Greece, July 2008. IOS Press, 2008,
pp. 99-103.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 186

The Big Picture II

ELP

OWL 2 EL

OWL 2
= SROIQ Rules

OWL 2 EL Rules

>ExpTime

tractable

data-tractable

hybrid ELP
(local

closed
world)

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 187

Thanks!

http://www.semantic-web-book.org/page/ISWC2010_Tutorial

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 188

References OWL and Rules

• Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, Description
Logic Rules. In Malik Ghallab, Constantine D. Spyropoulos, Nikos
Fakotakis, Nikos Avouris, eds.: Proceedings of the 18th European
Conference on Artificial Intelligence (ECAI-08), pp. 80–84. IOS Press
2008.

• Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, ELP: Tractable
Rules for OWL 2. In Amit Sheth, Steffen Staab, Mike Dean, Massimo
Paolucci, Diana Maynard, Timothy Finin, Krishnaprasad
Thirunarayan, eds.: Proceedings of the 7th International Semantic
Web Conference (ISWC-08), pp. 649–664. Springer 2008.

• http://www.w3.org/Submission/SWRL/
• Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for

OWL-DL with Rules. Journal of Web Semantics 3(1):41–60, 2005.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 189

References OWL and Rules

• Sebastian Rudolph, Markus Krötzsch, Pascal Hitzler, Cheap Boolean
Role Constructors for Description Logics. In: Steffen Hölldobler and
Carsten Lutz and Heinrich Wansing (eds.), Proceedings of 11th
European Conference on Logics in Artificial Intelligence (JELIA),
volume 5293 of LNAI, pp. 362-374. Springer, September 2008.

• Matthias Knorr, Jose Julio Alferes, Pascal Hitzler, A Coherent Well-
founded model for Hybrid MKNF knowledge bases. In: Malik Ghallab,
Constantine D. Spyropoulos, Nikos Fakotakis, Nikos Avouris (eds.),
Proceedings of the 18th European Conference on Artificial
Intelligence, ECAI2008, Patras, Greece, July 2008. IOS Press, 2008,
pp. 99-103.

ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 190

See also our books

• Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph,
York Sure,
Semantic Web – Grundlagen. Springer, 2008.
http://www.semantic-web-grundlagen.de/

• Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph,
Foundations of Semantic Web Technologies.
Chapman & Hall/CRC, 2009.
http://www.semantic-web-book.org/wiki/FOST

(Grab a flyer.)

	OWL 2 – Theory and Practice�
	Today’s Schedule
	Textbook
	Textbook (Chinese translation)
	Slides
	Slide Number 6
	OWL
	Main References Part 1
	OWL – Overview
	Contents
	Contents
	Rationale behind OWL
	OWL Building Blocks
	DL syntax FOL syntax
	DL syntax FOL syntax
	Special classes and properties
	Class constructors
	Class constructors
	Contents
	Understanding SROIQ(D)
	Understanding SROIQ(D)
	Understanding SROIQ(D)
	Understanding SROIQ(D)
	Understanding SROIQ(D)
	Understanding SROIQ(D)
	Understanding SROIQ(D)
	Understanding SROIQ(D)
	SROIQ(D) constructors – overview
	Some Syntactic Sugar in OWL
	Contents
	OWL – Extralogical Features
	The modal logic perspective
	The RDFS perspective
	Punning
	Contents
	OWL Semantics
	OWL Direct Semantics
	OWL Direct Semantics: Restrictions
	OWL Direct Semantics: Restrictions
	OWL Direct Semantics
	Interpretation Example
	OWL Direct Semantics
	OWL Direct Semantics
	Logical Consequence
	Notion of logical consequence
	Not a model!
	A model
	Models
	Counterexample
	Logical Consequence
	OWL Direct Semantics via FOL
	Inconsistency and Satisfiability
	Inconsistency and Satisfiability
	A Semantic Puzzle
	What Semantics Is Good For
	In other words
	Simple Logical Reasoning
	Less Simple Reasoning
	SNOMED CT
	Contents
	OWL Profiles
	OWL 2 EL
	OWL 2 RL
	OWL 2 RL
	OWL 2 QL
	Contents
	A Reasoning Problem
	A Reasoning Problem
	Proof Theory
	Proof theory Via Tableaux
	Contents
	Important Inference Problems
	Reduction to Unsatisfiability
	Reduction to Satisfiability
	Contents
	ALC tableaux: contents
	Transform. to negation normal form
	Slide Number 78
	Example
	ALC tableaux: contents
	Naive tableaux algorithm
	The Tableau
	Simple example
	Another example
	Formal Definition
	Initialisation
	Example initialisation
	Careful: need NNF!
	Constructing the tableau
	Naive ALC tableaux rules
	Example
	ALC tableaux: contents
	There‘s a termination problem
	Solution?
	Blocking
	Constructing the tableau
	Naive ALC tableaux rules
	Example (0)
	Example (0)
	Example (0) the other case
	Example(1)
	Example (2)
	Example (3)
	Example (4)
	Example (4)
	Contents
	Tableaux Algorithm for SHIQ
	Transform. to negation normal form
	Slide Number 109
	Formal Definition
	Initialisation
	Notions
	Blocking for SHIQ
	Constructing the tableau
	SHIQ Tableaux Rules
	SHIQ Tableaux Rules
	SHIQ Tableaux Rules
	Example (1): cardinalities
	Example (1): cardinalities
	Example (1): cardinalities – again
	Example (2): cardinalities
	Example (3): choose
	Example (4): inverse roles
	Example (5): Transitivity and Blocking
	Example (5): Transitivity and Blocking
	Example (6): Pairwise Blocking
	Example (7): Dynamic Blocking
	Tableaux Reasoners
	Contents
	OWL tools (incomplete listing)
	Main References
	Main References – Textbooks
	Further References
	Slide Number 134
	Slide Number 135
	Main References Optional Part
	Contents
	Contents
	Motivation: OWL and Rules
	Contents
	Preliminaries: Datalog
	Datalog semantics example
	Contents
	More rules than you ever need: SWRL
	SWRL example (running example)
	SWRL example (running example)
	SWRL example (running example)
	SWRL example (running example)
	SWRL example (running example)
	SWRL example (running example)
	SWRL example (running example)
	Contents
	Retaining decidability I: DL-safety
	DL-safe SWRL example
	DL-safe SWRL example
	Contents
	Retaining decidability II: DL Rules
	DL Rules: more examples
	DL Rules: definition
	DL Rules: definition
	DL Rules: definition
	DL Rules: definition
	Contents
	The rules hidden in OWL 2: SROIQ Rules
	SROIQ Rules example
	SROIQ Rules normal form
	Contents
	Retaining tractability I: OWL 2 EL Rules
	OWL 2 EL Rules: normal form
	OWL 2 EL Rules in a nutshell
	Contents
	Retaining tractability II: DLP 2
	Contents
	Retaining tractability III: ELP
	DL-safe variables
	Variable-restricted DL-safe Datalog
	Role conjunctions
	Retaining tractability III: ELP
	ELP example
	ELP example	
	DL-safe SWRL example
	ELP example
	ELP Reasoner ELLY
	The Big Picture
	Closed World and ELP	
	The Big Picture II
	Slide Number 187
	References OWL and Rules
	References OWL and Rules
	See also our books

