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Today’s Schedule

09:00 - 10:00 OWL introduction (Pascal)

10:00 - 10:30 coffee break

10:30 - 12:30 OWL introduction (Pascal)

12:30 - 14:00 lunch

14:00 - 16:00 hands-on session (Birte)

16:00 - 16:30 coffee break 

16:30 - 18:30 applications (Bernardo) 
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Textbook

Pascal Hitzler, Markus Krötzsch,
Sebastian Rudolph

Foundations of Semantic Web 
Technologies
Chapman & Hall/CRC, 2009

Grab a flyer!

http://www.semantic-web-book.org
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Textbook (Chinese translation)

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph

语义Web技术基础
Tsinghua University Press (清华大学出版社）,  2011,  to appear

Translators:
Yong Yu, Haofeng Wang, Guilin Qi (俞勇，王昊奋，漆桂林)

http://www.semantic-web-book.org
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Slides

Available from

http://www.semantic-web-book.org/page/ISWC2010_Tutorial
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Part 1

OWL 2 – Syntax, Semantics, Reasoning
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OWL
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Main References Part 1

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, Foundations 
of Semantic Web Technologies, Chapman & Hall/CRC, 2009

OWL 2 Document Overview: http://www.w3.org/TR/owl2-overview/

Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-
Schneider, Sebastian Rudolph, OWL 2 Web Ontology Language: 
Primer. W3C Recommendation, 27 October 2009. 
http://www.w3.org/TR/owl2-primer/
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OWL – Overview

• Web Ontology Language
– W3C Recommendation for the Semantic Web, 2004
– OWL 2 (revised W3C Recommendation), 2009 

• Semantic Web KR language based on description logics (DLs)
– OWL DL is essentially DL SROIQ(D)
– KR for web resources, using URIs.
– Using web-enabled syntaxes, e.g. based on XML or RDF. 

We present 
• DL syntax (used in research – not part of the W3C 

recommendation)
• (some) RDF Turtle syntax
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Contents

• OWL – Basic Ideas
• OWL as the Description Logic SROIQ(D)
• Different Perspectives on OWL
• OWL Semantics
• OWL Profiles
• Proof Theory
• Tools
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Rationale behind OWL

• Open World Assumption
• Favourable trade-off between expressivity and scalability
• Integrates with RDFS
• Purely declarative semantics

Features:
• Fragment of first-order predicate logic (FOL)
• Decidable
• Known complexity classes (N2ExpTime for OWL 2 DL)
• Reasonably efficient for real KBs
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OWL Building Blocks

• individuals (written as URIs)
– also: constants (FOL), resources (RDF)
– http://example.org/sebastianRudolph
– http://www.semantic-web-book.org
– we write these lowercase and abbreviated, e.g. 

"sebastianRudolph"
• classes (also written as URIs!)

– also: concepts, unary predicates (FOL)
– we write these uppercase, e.g. "Father"

• properties (also written as URIs!)
– also: roles (DL), binary predicates (FOL)
– we write these lowercase, e.g. "hasDaughter"
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DL syntax                    FOL syntax

• Person(mary)

• Woman v Person
– Person ≡ HumanBeing

• hasWife(john,mary)

• hasWife v hasSpouse
– hasSpouse ≡ marriedWith

• Person(mary)

• 8x (Woman(x) ! Person(x))

• hasWife(john,mary)

• 8x 8y (hasWife(x,y)! hasSpouse(x,y))

ABox statements

TBox statements
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• :mary      rdf:type                    :Person .

• :Woman  rdfs:subClassOf     :Person .

• :john       :hasWife                   :mary .

• :hasWife rdfs:subPropertyOf :hasSpouse .

• Person(mary)

• Woman v Person
– Person ≡ HumanBeing

• hasWife(john,mary)

• hasWife v hasSpouse
– hasSpouse ≡ marriedWith

DL syntax                    FOL syntax
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Special classes and properties

• owl:Thing (RDF syntax)
– DL-syntax: >
– contains everything

• owl:Nothing (RDF syntax)
– DL-syntax: ?
– empty class

• owl:topProperty (RDF syntax)
– DL-syntax: U
– every pair is in U

• owl:bottomProperty (RDF syntax)
– empty property
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Class constructors

• conjunction
– Mother ´ Woman u Parent
– :Mother owl:equivalentClass _:x .

_:x rdf:type owl:Class .
_:x owl:intersectionOf ( :Woman :Parent ) .

• disjunction
– Parent ´ Mother t Father
– :Parent owl:equivalentClass _:x .

_:x rdf:type owl:Class .
_:x owl:unionOf ( :Mother :Father ) .

• negation
– ChildlessPerson ´ Person u :Parent
– :ChildlessPerson owl:equivalentClass _:x .

_:x rdf:type owl:Class .
_:x owl:intersectionOf ( :Person _:y ) .
_:y owl:complementOf :Parent .

8x (Mother(x) $ Woman(x) Æ Parent(x))

8x (Parent(x) $ Mother(x) Ç Father(x))

8x (ChildlessPerson(x) $ Person(x) Æ :Parent(x))
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Class constructors

• existential quantification
– only to be used with a role – also called a property restriction
– Parent ´ 9hasChild.Person
– :Parent owl:equivalentClass _:x .

_:x rdf:type owl:Restriction .
_:x owl:onProperty :hasChild .
_:x owl:someValuesFrom :Person .

• universal quantification
– only to be used with a role – also called a property restriction
– Person u Happy ´ 8hasChild.Happy
– _:x rdf:type owl:Class .

_:x owl:intersectionOf ( :Person :Happy ) .
_:x owl:equivalentClass _:y .
_:y rdf:type owl:Restriction .
_:y owl:onProperty :hasChild .
_:y owl:allValuesFrom :Happy .

• Class constructors can be nested arbitrarily

8x (Parent(x) $
9y (hasChild(x,y) Æ Person(y)))

8x (Person(x) Æ Happy(x) $
8y (hasChild(x,y) ! Happy(y)))



ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 19

Contents

• OWL – Basic Ideas
• OWL as the Description Logic SROIQ(D)
• Different Perspectives on OWL
• OWL Semantics
• OWL Profiles
• Proof Theory
• Tools



ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 20

Understanding SROIQ(D)

The description logic ALC

• ABox expressions:
Individual assignments Father(john)
Property assignments hasWife(john,mary)

• TBox expressions
subclass relationships v

conjunction    u
disjunction                        t
negation                            :

property restrictions 8
9

Complexity: ExpTime

Also: >, ?
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Understanding SROIQ(D)

ALC + role chains = SR

• hasParent o hasBrother v hasUncle

– includes top property and bottom property

• includes S = ALC + transitivity
– hasAncestor o hasAncestor v hasAncestor

• includes SH = S + role hierarchies
– hasFather v hasParent

8x 8y (9z ((hasParent(x,z) Æ hasBrother(z,y)) ! hasUncle(x,y)))
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Understanding SROIQ(D)

• O – nominals (closed classes)
– MyBirthdayGuests ´ {bill,john,mary}
– Note the difference to

MyBirthdayGuests(bill)
MyBirthdayGuests(john)
MyBirthdayGuests(mary)

• Individual equality and inequality (no unique name assumption!)
– bill = john

• {bill} ´ {john}
– bill ≠ john

• {bill} u {john} ´ ?
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Understanding SROIQ(D)

• I – inverse roles

– hasParent ´ hasChild-

– Orphan ´ 8hasChild-.Dead

• Q – qualified cardinality restrictions
– ·4 hasChild.Parent(john)
– HappyFather ´ ¸2 hasChild.Female
– Car v =4hasTyre.>

• Complexity SHIQ, SHOQ, SHIO: ExpTime. 
Complexity SHOIQ: NExpTime
Complexity SROIQ: N2ExpTime



ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 24

Understanding SROIQ(D)

Properties can be declared to be

• Transitive hasAncestor
• Symmetric hasSpouse
• Asymmetric hasChild
• Reflexive hasRelative
• Irreflexive parentOf
• Functional hasHusband
• InverseFunctional hasHusband

called property characteristics
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Understanding SROIQ(D)

(D) – datatypes

• so far, we have only seen properties with individuals in second 
argument, called object properties or abstract roles (DL)

• properties with datatype literals in second argument are called 
data properties or concrete roles (DL)

• allowed are many XML Schema datatypes, including
xsd:integer, xsd:string, xsd:float, xsd:booelan, xsd:anyURI, 
xsd:dateTime

and also e.g. owl:real
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Understanding SROIQ(D)

(D) – datatypes

• hasAge(john, "51"^^xsd:integer)

• additional use of constraining facets (from XML Schema)
– e.g. Teenager ´ Person u 9hasAge.(xsd:integer: ¸12 and ·19)

note: this is not standard DL notation!
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Understanding SROIQ(D)

further expressive features

• Self
– PersonCommittingSuicide ´ 9kills.Self

• Keys (not really in SROIQ(D), but in OWL)
– set of (object or data) properties whose values uniquely 

identify an object
• disjoint properties

– Disjoint(hasParent,hasChild)
• explicit anonymous individuals

– as in RDF: can be used instead of named individuals
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SROIQ(D) constructors – overview

• ABox assignments of individuals to classes or properties
• ALC: v, ´ for classes

u, t, :, 9, 8
>, ?

• SR: + property chains, property characteristics, 
role hierarchies v

• SRO: + nominals {o}
• SROI: + inverse properties
• SROIQ: + qualified cardinality constraints
• SROIQ(D): + datatypes (including facets)

• + top and bottom roles (for objects and datatypes)
• + disjoint properties
• + Self
• + Keys (not in SROIQ(D), but in OWL)
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Some Syntactic Sugar in OWL

This applies to the non-DL syntaxes (e.g. RDF syntax).

• disjoint classes
– Apple u Pear v ?

• disjoint union
– Parent ´ Mother t Father

Mother u Father v ?

• negative property assignments (also for datatypes)
– :hasAge(jack,"53"^^xsd:integer)
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OWL – Extralogical Features

• OWL ontologies have URIs and can be referenced by others via
– import statements

• Namespace declarations
• Entity declarations (must be done)
• Versioning information etc.

• Annotations
– Entities and axioms (statements) can be endowed with 

annotations, e.g. using rdfs:comment.
– OWL syntax provides annotation properties for this purpose.
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The modal logic perspective

• Description logics can be understood from a modal logic 
perspective.

• Each pair of 8R and 9R statements give rise to a pair of 
modalities.

• Essentially, some description logics are multi-modal logics.

• See e.g. Baader et al., The Description Logic Handbook, 
Cambridge University Press, 2007.
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The RDFS perspective

• :mary rdf:type :Person .
• :Mother rdfs:subClassOf :Woman .
• :john :hasWife :Mary .
• :hasWife rdfs:subPropertyOf 

:hasSpouse

• :hasWife rdfs:range :Woman .
• :hasWife rdfs:domain :Man .

• Person(mary)
• Mother v Woman
• hasWife(john,mary)
• hasWife v hasSpouse

• > v 8hasWife.Woman
• > v 8hasWife-.Man         or

9hasWife.> v Man

RDFS also allows to 
make statements about statements 
! only possible through annotations in OWL
mix class names, individual names, property names (they are all URIs)
! punning in OWL

RDFS semantics is weaker
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Punning

• Description logics impose type separation, i.e. names of 
individuals, classes, and properties must be disjoint.

• In OWL 2 Full, type separation does not apply.

• In OWL 2 DL, type separation is relaxed, but a class X and an 
individual X are interpreted semantically as if they were different.

• Father(john)
SocialRole(Father)

• See further below on the two different semantics for OWL.
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OWL Semantics

• There are two semantics for OWL.

1. Description Logic Semantics
also: Direct Semantics; FOL Semantics
Can be obtained by translation to FOL.
Syntax restrictions apply! (see next slide)

2. RDF-based Semantics
No syntax restrictions apply.
Extends the direct semantics with RDFS-reasoning features.

In the following, we will deal with the direct semantics only.
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OWL Direct Semantics

To obtain decidability, syntactic restrictions apply.

• Type separation / punning

• No cycles in property chains.

• No transitive properties in cardinality restrictions.



ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 38

OWL Direct Semantics: Restrictions

arbitrary property chain axioms lead to undecidability
restriction: set of property chain axioms has to be regular

there must be a strict linear order ≺ on the properties
every property chain axiom has to have one of the following forms:

R o R v R S– v R S1 o S2 o ... o Sn v R
R o S1 o S2 o ... o Sn v R S1 o S2 o ... o Sn o R v R

thereby, Si ≺ R for all i= 1, 2, . . . , n.

Example 1: R o S v R S o S v S R o S o R v T
 regular with order S ≺ R ≺ T
Example 2: R o T o S v T
 not regular because form not admissible
Example 3: R o S v S S o R v R
 not regular because no adequate order exists
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OWL Direct Semantics: Restrictions

combining property chain axioms and cardinality constraints 
may lead to undecidability
restriction: use only simple properties in cardinality expressions 
(i.e. those which cannot be – directly or indirectly – inferred from 
property chains)
technically:

for any property chain axiom S1 o S2 o ... o Sn v R with n>1, R is non-
simple
for any subproperty axiom S v R with S non-simple, R is non-simple
all other properties are simple

Example:   Q o P v R       R o P v R       R v S       P v R       Q v S
non-simple: R, S simple: P, Q
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OWL Direct Semantics

• model-theoretic semantics
• starts with interpretations
• an interpretation        maps

individual names, class names and property names...

...into a domain

.I 

aI CI

RI

Δ
II IC IR
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Interpretation Example
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OWL Direct Semantics

• mapping is extended to complex class expressions:
– >I = ∆I ?I = ;
– (C u D)I = CI \ DI (C t D)I = CI [ DI (:C)I = ∆I \ CI

– (8R.C)I = { x | for all (x,y) ∈ RI we have y ∈ CI}     
(9R.C)I = { x | there is (x,y) ∈ RI with y ∈ CI}

– (≥nR.C)I = { x | #{ y | (x,y) ∈ RI and y ∈ CI} ≥ n }
– (≤nR.C)I = { x | #{ y | (x,y) ∈ RI and y ∈ CI} ≤ n }

• ...and to role expressions:
– UI = ∆I × ∆I (R–)I = { (y,x) | (x,y) ∈ RI }

• ...and to axioms:
– C(a)     holds, if aI ∈ CI R(a,b)  holds, if (aI,bI) ∈ RI

– C v D  holds, if CI ⊆ DI R v S  holds, if RI ⊆ SI

– Disjoint(R,S) holds if RI \ SI = ;
– S1 o S2 o ... o Sn v R  holds if  S1

I o S2
I o ... o Sn

I ⊆ RI
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OWL Direct Semantics

• mapping is extended to complex class expressions:
– >I = ∆I ?I = ;
– (C u D)I = CI \ DI (C t D)I = CI [ DI (:C)I = ∆I \ CI

– (8R.C)I = { x | for all (x,y) ∈ RI we have y ∈ CI}     
(9R.C)I = { x | there is (x,y) ∈ RI with y ∈ CI}

– (≥nR.C)I = { x | #{ y | (x,y) ∈ RI and y ∈ CI} ≥ n }
– (≤nR.C)I = { x | #{ y | (x,y) ∈ RI and y ∈ CI} ≤ n }

• ...and to role expressions:
– UI = ∆I × ∆I (R–)I = { (y,x) | (x,y) ∈ RI }

• ...and to axioms:
– C(a)     holds, if aI ∈ CI R(a,b)  holds, if (aI,bI) ∈ RI

– C v D  holds, if CI ⊆ DI R v S  holds, if RI ⊆ SI

– Disjoint(R,S) holds if RI \ SI = ;
– S1 o S2 o ... o Sn v R  holds if  S1

I o S2
I o ... o Sn

I ⊆ RI

• what’s below gives us a notion of model:

An interpretation is a model of a set of axioms if all the axioms 
hold (are evaluated to true) in the interpretation.

• Notion of logical consequence obtained via models (below).
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Logical Consequence

A model for an OWL KB is such a mapping I which satisfies all 
axioms in the KB.

An axiom ® is a logical consequence
of a KB if every model of the KB is also
a model of ®.

The logical consequences of a KB are all those things which are 
necessarily the case in all „realities“ in which the KB is the case.
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Notion of logical consequence
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Not a model!
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A model
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Models

Is FacultyMember(aifb) a logical consequence?
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Counterexample
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Logical Consequence

Is FacultyMember(rudiStuder) a logical consequence?
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OWL Direct Semantics via FOL

• but often OWL 2 DL is said to be a fragment of first-order 
predicate logic (FOL) [with equality]...

• yes, there is a translation of OWL 2 DL into FOL

• ...which (interpreted under FOL semantics) coincides with the 
definition just given.
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Inconsistency and Satisfiability

• A set of axioms (knowledge base) is satisfiable (or consistent) if 
it has a model.

• It is unsatisfiable (inconsistent) if it does not have a model.

• Inconsistency is often caused by modeling errors.

• Unicorn(beauty)
Unicorn v Fictitious
Unicorn v Animal
Animal v :Fictitious
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Inconsistency and Satisfiability

• A knowledge base is incoherent if a named class is equivalent to ?.

• It usually also points to a modeling error.
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A Semantic Puzzle

From Horridge, Parsia, Sattler, From Justifications to Proofs for 
Entailments in OWL. In: Proceedings OWLED2009. 
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-529/
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What Semantics Is Good For

• Opinions Differ. Here’s my take.

• Semantic Web requires a shareable, declarative and computable
semantics.

• I.e., the semantics must be a formal entity which is clearly 
defined and automatically computable.

• Ontology languages provide this by means of their formal 
semantics.

• Semantic Web Semantics is given by a relation – the logical 
consequence relation.

• Note: This is considerably more than saying that the semantics 
of an ontology is the set of its logical consequences!
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In other words

We capture the meaning of information

not by specifying its meaning (which is impossible)
but by specifying 

how information interacts with other information.

We describe the meaning indirectly through its effects.
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Simple Logical Reasoning

If I ask for soccer team 
members, I also want to get 

the goalkeepers listed ...

If I ask for cities, I also 
want all capitals listed ...

inheritance reasoning
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Less Simple Reasoning

What was again the name of 
that russian researcher who 
worked on resolution-based 

calculi for EL? 

Are lobsters spiders?

What is "Käuzchen" 
in english?

answering requires 
merging of knowledge 
from many websites 
and using background 
knowledge.
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SNOMED CT

• SNOMED CT: commercial ontology, medical domain
ca. 300,000 axioms

• InjuryOfFinger ´ Injury u 9site.FingerS
InjuryOfHand ´ Injury u 9site.HandS
FingerS v HandP
HandP v HandS u 9part.HandE

• Reasoning has been used e.g. for 
– classification (computing the hidden taxonomy)

e.g., InjuryOfFinger v InjuryOfHand
– bug finding
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OWL Profiles

• OWL Full – using the RDFS-based semantics
• OWL DL – using the FOL semantics

The OWL 2 documents describe further profiles, which are of 
polynomial complexity:

• OWL EL (EL++)
• OWL QL (DL LiteR)
• OWL RL (DLP)



ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler

OWL 2 EL

• allowed: 
– subclass axioms with intersection, existential 

quantification, top, bottom
• closed classs must have only one member

– property chain axioms, range restrictions (under certain 
conditions)

• disallowed:
– negation, disjunction, arbitrary universal quantification, 

role inverses

u9>? v u9>?
• Examples:  Human v 9hasParent.Person

9married.> u CatholicPriest v ?; 
hasParent ± hasParent v hasGrandparent
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OWL 2 RL

• Motivated by the question: what fraction of OWL 2 DL can 
be expressed naively by rules (with equality)?

• Examples:
– 9parentOf.9parentOf.> v Grandfather

rule version:  parentOf(x,y) parentOf(y,z) ! Grandfather(x)
– Orphan v 8hasParent.Dead

rule version:  Orphan(x) hasParent(x,y) ! Dead(y)
– Monogamous v ≤1married.Alive

rule version:  
Monogamous(x) married(x,y) Alive(y) married(x,z)
Alive(z)! y=z

– childOf ± childOf v grandchildOf
rule version:  childOf(x,y) childOf(y,z) ! grandchildOf(x,z)

– Disj(childOf,parentOf)
rule version:  childOf(x,y) parentOf(x,y) !
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OWL 2 RL

• Syntactic characterization: 
– essentially, all axiom types are allowed
– disallow certain constructors on lhs and rhs of 

subclass statements 

8 : v 9 t
– cardinality restrictions: only on rhs and only ≤1 and  

≤0 allowed
– closed classes: only with one member

• Reasoner conformance requires only soundness.
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OWL 2 QL

• Motivated by the question: what fraction of OWL 2 
DL can be captured by standard database 
technology?

• Formally: query answering LOGSPACE w.r.t. data 
(via translation into SQL)

• Allowed:
– subproperties, domain, range
– subclass statements with 

• left hand side: class name or expression of type 9r.>
• right hand side: intersection of class names, expressions of 

type 9r.C and negations of lhs expressions
• no closed classes!

• Example:
9married.> v :Free u 9has.Sorrow
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A Reasoning Problem

A is a logical consequence of K
written K ² A

if and only if
every model of K is a model of A.

• To show an entailment, we need to check all models?
• But that‘s infinitely many!!!
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A Reasoning Problem

We need algorithms which do not apply the model-based 
definition of logical consequence in a naive manner.

These algorithms should be syntax-based.
(Computers can only do syntax manipulations.)

Luckily, such algorithms exist!

However, their correctness (soundness and completeness) 
needs to be proven formally.
Which is often a non-trivial problem requiring substantial 
mathematical build-up.

We won‘t do the proofs here.
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Proof Theory

We will show the Tableaux Method – implemented, e.g., in Pellet 
and Racer.

Alternatives:
• Transformation to disjunctive datalog using basic superposition

done for SHIQ
• Naive mapping to Datalog

for OWL RL
• Mapping to SQL

for OWL QL
• Special-purpose algorithms for OWL EL

e.g. transformation to Datalog
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Proof theory Via Tableaux

• Adaptation of FOL tableaux algorithms.

• Problem: OWL is decidable, but FOL tableaux algorithms do not 
guarantee termination.

• Solution: blocking. 
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Important Inference Problems

• Global consistency of a knowledge base. KB ² false?
– Is the knowledge base meaningful?

• Class consistency C ´ ??
– Is C necessarily empty?

• Class inclusion (Subsumption) C v D?
– Structuring knowledge bases

• Class equivalence C ´ D?
– Are two classes in fact the same class?

• Class disjointness C u D = ??
– Do they have common members?

• Class membership C(a)?
– Is a contained in C?

• Instance Retrieval „find all x with C(x)“
– Find all (known!) individuals belonging to a given class.
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Reduction to Unsatisfiability

• Global consistency of a knowledge base. KB unsatisfiable
– Failure to find a model.

• Class consistency C ´ ??
– KB [ {C(a)} unsatisfiable

• Class inclusion (Subsumption) C v D?
– KB [ {C u :D(a)}  unsatisfiable (a new)

• Class equivalence C ´ D?
– C v D und D v C

• Class disjointness C u D = ??
– KB [ {(C u D)(a)} unsatisfiable (a new)

• Class membership C(a)?
– KB [ {:C(a)} unsatisfiable

• Instance Retrieval „find all x with C(x)“
– Check class membership for all individuals.
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Reduction to Satisfiability

• We will present so-called tableaux algorithms.

• They attempt to construct a model of the knowledge base
in a „general, abstract“ manner.
– If the construction fails, then (provably) there is no model –

i.e. the knowledge base is unsatisfiable.
– If the construction works, then it is satisfiable.

! Hence the reduction of all inference problems to the checking of 
unsatisfiability of the knowledge base!
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ALC tableaux: contents

• Transformation to negation normal form
• Naive tableaux algorithm
• Tableaux algorithm with blocking
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Transform. to negation normal form

Given a knowledge base K.

• Replace C ´ D by C v D and D v C.
• Replace C v D by :C t D.
• Apply the equations on the next slide exhaustively.

Resulting knowledge base: NNF(K)
Negation normal form of K.
Negation occurs only directly in front of atomic classes.
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K and NNF(K) have the same models (are logically equivalent).
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Example

P v (E u U) t :(:E t D).

In negation normal form:

:P t (E u U) t (E u :D).
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ALC tableaux: contents

• Transformation to negation normal form
• Naive tableaux algorithm
• Tableaux algorithm with blocking
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Naive tableaux algorithm

Reduction to (un)satisfiability.

Idea:
• Given knowledge base K
• Attempt construction of a tree (called Tableau), which 

represents a model of K.
(It‘s actually rather a Forest.)

• If attempt fails, K is unsatisfiable.
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The Tableau

• Nodes represent elements of the domain of the model
! Every node x is labeled with a set L(x) of class expressions. 
C 2 L(x) means: "x is in the extension of C"

• Edges stand for role relationships:
! Every edge <x,y> is labeled with a set L(<x,y>) of role names.
R 2 L(<x,y>) means: "(x,y) is in the extension of R"
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Simple example

C(a)                      
C v 9R.D                          
D v E

Does this entail 
(9R.E)(a)?

(add 8R.:E(a)
and show 
unsatisfiability)

a

x

R

C
9R.D
8R.:E

D
E
:E  (because 8R.:E(a))
Contradiction!
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Another example

C(a)                      
C v 9R.D                          
D v E t F
F v E 

Does this entail 
(9R.E)(a)?

(add 8R.:E(a) 
and show 
unsatisfiability)

a

x

R

C
9R.D
8R.:E

D
:E  (because 8R.:E(a))
choice: (D v E t F):
1. E (contradiction!)
2. F

E (contradiction!)
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Formal Definition

• Input: K=TBox + ABox (in NNF)
• Output: Whether or not K is satisfiable.

• A tableau is a directed labeled graph
– nodes are individuals or (new) variable names
– nodes x are labeled with sets L(x) of classes
– edges <x,y> are labeled with sets L(<x,y>) of role names
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Initialisation

• Make a node for every individual in the ABox.
• Every node is labeled with the corresponding class names from 

the ABox.
• There is an edge, labeled with R, between a and b, if R(a,b) is in 

the ABox.

• (If there is no ABox, the initial tableau consists of a node x with 
empty label.)
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Example initialisation

Human v 9hasParent.Human
Orphan v Human u :9hasParent.Alive 
Orphan(harrypotter)
hasParent(harrypotter,jamespotter)

harrypotter

jamespotter

Orphan

<nothing>

hasParent
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Careful: need NNF!

:Human t 9hasParent.Human
:Orphan t (Human u 8hasParent.:Alive)
Orphan(harrypotter)
hasParent(harrypotter,jamespotter)

harrypotter

jamespotter

Orphan

<nothing>

hasParent



ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 89

Constructing the tableau

• Non-deterministically extend the tableau using the rules on the 
next slide.

• Terminate, if
– there is a contradiction in a node label (i.e., it contains 

classes C and :C, or it contains ?), or
– none of the rules is applicable.

• If the tableau does not contain a contradiction, then the 
knowledge base is satisfiable.
Or more precisely: If you can make a choice of rule applications 
such that no contradiction occurs and the process terminates, 
then the knowledge base is satisfiable.
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Naive ALC tableaux rules
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Example

:Human t 9hasParent.Human
:Orphan t (Human u 8hasParent.:Alive)
Orphan(harrypotter)
hasParent(harrypotter,jamespotter)

harrypotter

jamespotter

:Orphan t (Human u 8hasParent.:Alive)
1. :Orphan (contradiction)
2. Human u 8hasParent.:Alive

Human
8hasParent.:Alive

Alive

hasParent

:Alive(jamespotter)
i.e. add: Alive(jamespotter)

and search for contradiction

2. :Alive (contradiction)

Orphan
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ALC tableaux: contents

• Transformation to negation normal form
• Naive tableaux algorithm
• Tableaux algorithm with blocking
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There‘s a termination problem

TBox: 9R.>
ABox: >(a1)
• Obviously satisfiable: 

Model M with domain elements a1
M,a2

M,...
and RM(ai

M,ai+1
M) for all i ¸ 1

• but tableaux algorithm does not terminate!

a1 x y

>
9R.>

>
9R.>

>
9R.>

R R R
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Solution?

Actually, things repeat!
Idea: it is not necessary to expand x, since it‘s simply a copy of a. 

) Blocking

a x y

>
9R.>

>
9R.>

>
9R.>

R R R



ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 95

Blocking

• x is blocked (by y) if
– x is not an individual (but a variable)
– y is a predecessor of x and L(x) µ L(y)
– or a predecessor of x is blocked

Here, x is blocked by a.

a x y

>
9R.>

>
9R.>

>
9R.>

R R R
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Constructing the tableau

• Non-deterministically extend the tableau using the rules on the 
next slide, but only apply a rule if x is not blocked!

• Terminate, if
– there is a contradiction in a node label (i.e., it contains 

classes C and :C), or
– none of the rules is applicable.

• If the tableau does not contain a contradiction, then the 
knowledge base is satisfiable.
Or more precisely: If you can make a choice of rule applications 
such that no contradiction occurs and the process terminates, 
then the knowledge base is satisfiable.



ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 97

Naive ALC tableaux rules

Apply only if x is not blocked!
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Example (0)

• Knowledge base {Human v 9hasParent.Human, Bird(tweety)}
• We want to show that Human(tweety) does not hold,

i.e. that :Human(tweety) is entailed.
• We will not be able to show this.

I.e. Human(tweety) is possible.

• Shorter notation:
H v 9p.H 
B(t)

:H(t) entailed?
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Example (0)

Knowledge base {:H t 9p.H, B(t), H(t)}

expansion stops. Cannot find contradiction!

t

H
B
:H t 9p.H
1. :H (contradiction)
2. 9p.H

x

2.:
H
blocked by t!

p
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Example (0) the other case

Knowledge base {:H t 9p.H, B(t), :H(t)}

no further expansion possible – knowledge base is satisfiable!

t

:H
B
:H t 9p.H
1. :H cannot be

added. no expansion
in this part

2. 9p.H

x

2.:
H
:H t 9p.H
2.1: :H (contradiction)
2.2: 9p.H

y

2.2:
H
blocked by x

p p
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Example(1)

Show, that
Professor v (Person u Unversitymember)

t (Person u :PhDstudent)
entails that every Professor is a Person.

Find contradiction in:
:P t (E u U) t (E u :S)
P u :E(x)

x

P u :E
P
:E
:P t (E u U) t (E u :S)
1. :P (contradiction)
2. (E u U) t (E u :S)

1. E u U
E (contradiction)

2. E u :S
E (contradiction)
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Example (2)

Show that
hasChild(john, peter)
hasChild(john, paul)
male(peter)
male(paul)

does not entail 8hasChild.male(john).

john peter

paulx

hasChild

hasChildhasChild

9hasChild.:male

:8hasChild.male ≡ 9hasChild.:male

male

male
:male
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Example (3)

Show that the knowledge base
Bird v Flies
Penguin v Bird
Penguin u Flies v ?
Penguin(tweety)

is unsatisfiable.

TBox:
:B t F
:P t B
:P t :F t ?

tweety

P
:P t B
:B t F
:P t :F
1. :P (contradiction)
2. B

1. :B (contradiction)
2. F

1. :P (contradiction)
2. :F (contradiction)
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Example (4)

Show that the knowledge base
C(a) C(c)
R(a,b) R(a,c)
S(a,a) S(c,b)
C v 8S.A
A v 9R.9S.A
A v 9R.C

entails 9R.9R.9S.A(a).
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Example (4)

a b

c

x y

TBox:
:C t 8S.A
:A t 9R.9S.A
:A t 9R.C

C
8R.8R.8S.:A

A
8R.8S.:A
:A t 9R.9S.A

9S.A
8S.:A

A
:A

C
:C t 8S.A

R

R

SS

R S

:9R.9R.9S.A ≡ 8R.8R.8S.:A
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Tableaux Algorithm for SHIQ

• Basic idea is the same.

• Blocking rule is more complicated

• Other modifictions are also needed.
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Transform. to negation normal form

Given a knowledge base K.

• Replace C ´ D by C v D and D v C.
• Replace C v D by :C t D.
• Apply the equations on the next slide exhaustively.

Resulting knowledge base: NNF(K)
Negation normal form of K.
Negation occurs only directly in front of atomic classes.
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NNF(·n R.C) = ·n R.NNF(C)
NNF(¸n R.C) = ¸n R.NNF(C)
NNF(: ·n R.C) = ¸(n+1)R.NNF(C)
NNF(: ¸n R.C) = ·(n-1)R.NNF(C), where ·(-1)R.C = ?

K and NNF(K) have the same models (are logically equivalent).
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Formal Definition

• A tableau is a directed labeled graph
– nodes are individuals or (new) variable names
– nodes x are labeled with sets L(x) of classes
– edges <x,y> are labeled 

• either with sets L(<x,y>) of role names or inverse role 
names

• or with the symbol = (for equality)
• or with the symbol ≠ (for inequality)



ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 111

Initialisation

• Make a node for every individual in the ABox. These nodes are 
called root nodes.

• Every node is labeled with the corresponding class names from 
the ABox.

• There is an edge, labeled with R, between a and b, if R(a,b) is in 
the ABox.

• There is an edge, labeled ≠, between a and b if a ≠ b is in the 
ABox.

• There are no = relations (yet).
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Notions

• We write S-- as S.
• If R 2 L(<x,y>) and R v S (where R,S can be inverse roles), then

– y is an S-successor of x and
– x is an S-predecessor of y.

• If y is an S-successor or an S--predecessor of x, then y is an 
neighbor of x.

• Ancestor is the transitive closure of Predecessor.
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Blocking for SHIQ

• x is blocked by y if x,y are not root nodes and
– the following hold: ["x is directly blocked"]

• no ancestor of x is blocked
• there are predecessors y', x' of x
• y is a successor of y' and x is a successor of x' 
• L(x) = L(y) and L(x') = L(y')
• L(<x',x>) = L(<y',y>)

– or the following holds: ["x is indirectly blocked"]
• an ancestor of x is blocked or
• x is successor of some y with L(<y,x>) =  ;
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Constructing the tableau

• Non-deterministically extend the tableau using the rules on the 
next slide.

• Terminate, if
– there is a contradiction in a node label, i.e.,

• it contains ? or classes C and :C or
• it contains a class · nR.C and 

x also has (n+1) R-successors yi and yi≠ yj (for all i ≠ j)
– or none of the rules is applicable.

• If the tableau does not contain a contradiction, then the 
knowledge base is satisfiable.
Or more precisely: If you can make a choice of rule applications 
such that no contradiction occurs and the process terminates, 
then the knowledge base is satisfiable.
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SHIQ Tableaux Rules
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SHIQ Tableaux Rules
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SHIQ Tableaux Rules
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Example (1): cardinalities

Show, that
hasChild(john, peter)
hasChild(john, paul)
male(peter)
male(paul)
·2hasChild.>(john)

does not entail 8hasChild.male(john).

john peter

paulx

hasChild

hasChild
hasChild

9hasChild.:male
·2hasChild.>

:8hasChild.male ≡ 9hasChild.:male

male

male
:male

now apply ·
=

:male
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Example (1): cardinalities

Show, that
hasChild(john, peter)
hasChild(john, paul)
male(peter)
male(paul)
·2hasChild.>(john)

does not entail 8hasChild.male(john).

john peter

paulx

hasChild

hasChild
hasChild

9hasChild.:male
·2hasChild.>

:8hasChild.male ≡ 9hasChild.:male

male

male
:male

now apply ·
=

backtracking!
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Example (1): cardinalities – again

Show, that
hasChild(john, peter)
hasChild(john, paul)
male(peter)      
male(paul)
·2hasChild.>(john) and peter ≠ paul

does not entail 8hasChild.male(john).

john peter

paulx

hasChild

hasChild
hasChild

9hasChild.:male
·2hasChild.>

:8hasChild.male ≡ 9hasChild.:male

male

male
:male

now apply ·
=

:male

≠

can backtrack only between x 
and peter – also leads to 
contradiction
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Example (2): cardinalities

Show, that
¸2hasSon.>(john) hasSon v hasChild

entails ¸2hasChild.>(john).

john

yx

hasSon
hasSon

¸2hasSon.>
·1hasChild.>

:¸2hasSon.> ≡ ·1hasChild.>

≠

hasSon-neighbors are also hasChild-neighbors, 
tableau terminates with contradiction
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Example (3): choose

¸3hasSon(john)
·2hasSon.male(john)
Is this contradictory?

No, because the following tableau is complete.

john¸3hasSon
·2hasSon.male

x

y

z

hasSon

hasSon

hasSon
≠

≠
≠



ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 123

Example (4): inverse roles

9hasChild.human(john)
human v 8hasParent.human
hasChild v hasParent-
zu zeigen: human(john)

john is hP--predecessor  of x, hence hP-neighbor of x

john xhasChild9hasChild.human
:human

human
:human t 8hasParent.human

human
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Example (5): Transitivity and Blocking

human v 9hasFather.>
human v 8hasAncestor.human
hasFather v hasAncestor Trans(hasAncestor)
human(john)

Does this entail ·1hasFather.>(john)? 
Negation: ¸2hasFather.>(john) 
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Example (5): Transitivity and Blocking

human v 9hasFather.>
hasFather v hasAncestor Trans(hasAncestor)
8hasAncestor.human(john)
human(john) ¸2hasFather.>(john)

john

x x1

y

h
¸2hF.>
8hA.h
:h t 9hF.>

hF

hF

hF

same as branch above

x2

...

h
:h t 9hF.>
8hA.h

hF

x2 now blocked by x1 :
Pair (x1,x2) repeats (x,x1)

h
:h t 9hF.>
8hA.h

h
:h t 9hF.>
8hA.h
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Example (6): Pairwise Blocking 

:C u (·1F) u 9F-.D u 8R-.(9F-.D), where 
D = C u (·1F) u 9F.:C, Trans(R), and F v R, 
is not satisfiable.

x y z

:C
·1F
9F-.D
8R-.(9F-.D)

D
9F-.D
8R-.(9F-.D)
C
·1F
9F.:C

F- F-

D
9F-.D
8R-.(9F-.D)
C
·1F
9F.:C

Without pairwise blocking, z would be blocked, which shouldn‘t happen:
Expansion of 9F.:C yields :C for node y as required.
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Example (7): Dynamic Blocking

A u 9S.(9R.> u 9P.> u 8R.C u8P.(9R.>) u 8P.(8R.C) u 8P.(9P.>))
with C = 8R-.(8P-.(8S-.:A)) and Trans(P), is not satisfiable.

Part of the tableau:

x y v

z w

A
...

9R.>
9P.>
8R.C
8P.(9R.>)
8P.(9P.>)
8P.(8R.C)

S

P

R

R

C

L(y)

At this stage, z would be blocked by y (assuming the presence of another pair).
However, when C from v is expanded, z becomes unblocked, which is 
necessary in order to label w with C which in turn labels x with :A, yielding
the required contradiction.
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Tableaux Reasoners

• Fact++
– http://owl.man.ac.uk/factplusplus/

• Pellet
– http://www.mindswap.org/2003/pellet/index.shtml

• RacerPro
– http://www.sts.tu-harburg.de/~r.f.moeller/racer/
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OWL tools (incomplete listing)

Reasoner:
• OWL 2 DL:

– Pellet http://clarkparsia.com/pellet/
– HermiT http://www.hermit-reasoner.com/

• OWL 2 EL:
– CEL http://code.google.com/p/cel/

• OWL 2 RL: 
– essentially any rule engine

• OWL 2 QL:
– essentially any SQL engine (with a bit of query rewriting on 

top)
Editors:
• Protégé
• NeOn Toolkit
• TopBraid Composer



ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 131

Main References
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Main References – Textbooks
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84. IOS Press 2008. 

• Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, ELP: 
Tractable Rules for OWL 2. In: Amit Sheth, Steffen Staab, Mike 
Dean, Massimo Paolucci, Diana Maynard, Timothy Finin, 
Krishnaprasad Thirunarayan (eds.), The Semantic Web - ISWC 
2008, 7th International Semantic Web Conference. Springer 
Lecture Notes in Computer Science Vol. 5318, 2008, pp. 649-664. 
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Thanks!

http://www.semantic-web-book.org/page/ISWC2010_Tutorial
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OWL 2 and Rules
–

Optional Part, If Enough Time
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Main References Optional Part

Main References:
• Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, Description 

Logic Rules. In Malik Ghallab, Constantine D. Spyropoulos, Nikos 
Fakotakis, Nikos Avouris, eds.: Proceedings of the 18th European 
Conference on Artificial Intelligence (ECAI-08), pp. 80–84. IOS 
Press 2008. 

• Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, ELP: Tractable 
Rules for OWL 2. In Amit Sheth, Steffen Staab, Mike Dean, 
Massimo Paolucci, Diana Maynard, Timothy Finin, Krishnaprasad 
Thirunarayan, eds.: Proceedings of the 7th International Semantic 
Web Conference (ISWC-08), pp. 649–664. Springer 2008. 
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Motivation: OWL and Rules

• Rules (mainly, logic programming) as alternative ontology 
modelling paradigm.

• Similar tradition, and in use in practice (e.g. F-Logic)

• Ongoing: W3C RIF working group 
– Rule Interchange Format
– based on Horn-logic
– language standard forthcoming 2009

• Seek: Integration of rules paradigm with ontology paradigm
– Here: Tight Integration in the tradition of OWL
– Foundational obstacle: reasoning efficiency / decidability

[naive combinations are undecidable] 
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Preliminaries: Datalog

• Essentially Horn-rules without function symbols

general form of the rules:

p1(x1,...,xn) Æ ...Æ pm(y1,...,yk) ! q(z1,...,zj)

semantics either as in predicate logic
or as Herbrand semantics (see next slide)

• decidable
• polynomial data complexity (in number of facts)
• combined (overall) complexity: ExpTime
• combined complexity is P if the number of variables per rule is 

globally bounded

body ! head
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Datalog semantics example

• Example:
p(x) ! q(x)
q(x) ! r(x)

! p(a)

• predicate logic semantics:

(8x) (p(x) ! r(x))
and
(8x) (:r(x) ! :p(x))
are logical consequences

q(a) and r(a)
are logical consequences

• Herbrand semantics

those on the left are not logical 
consequences

q(a) and r(a)
are logical consequences

material implication:
apply only to known constants
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More rules than you ever need: SWRL

• Union of OWL DL with (binary) function-free Horn rules
(with binary Datalog rules)

• undecidable
• no native tools available

• rather an overarching formalism

• see http://www.w3.org/Submission/SWRL/
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SWRL example (running example)

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)
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SWRL example (running example)

Conclusions:
dislikes(sebastian,peanutOil)

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)
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SWRL example (running example)

Conclusions:
dislikes(sebastian,peanutOil)
Conclusions:
dislikes(sebastian,peanutOil)
orderedDish(sebastian,ys)
ThaiCurry(ys)
Dish(ys)

orderedDish rdfs:range Dish.

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)
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SWRL example (running example)

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusions:
dislikes(sebastian,peanutOil)
Conclusions:
dislikes(sebastian,peanutOil)
orderedDish(sebastian,ys)
ThaiCurry(ys)
Dish(ys)

contains(ys,peanutOil)
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SWRL example (running example)

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusions:
dislikes(sebastian,peanutOil)
Conclusions:
dislikes(sebastian,peanutOil)
orderedDish(sebastian,ys)
ThaiCurry(ys)
Dish(ys)

contains(ys,peanutOil)
dislikes(sebastian,ys)
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SWRL example (running example)

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusions:
dislikes(sebastian,peanutOil)
Conclusions:
dislikes(sebastian,peanutOil)
orderedDish(sebastian,ys)
ThaiCurry(ys)
Dish(ys)

contains(ys,peanutOil)
dislikes(sebastian,ys)
Unhappy(sebastian)
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SWRL example (running example)

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusion: Unhappy(sebastian)
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Retaining decidability I: DL-safety

• Reinterpret SWRL rules: 
Rules apply only to individuals which are explicitly given in the 
knowledge base.
– Herbrand-style way of interpreting them

• OWL DL + DL-safe SWRL is decidable
• Native support e.g. by KAON2 and Pellet

• See e.g. Boris Motik, Ulrike Sattler, and Rudi Studer. Query 
Answering for OWL-DL with Rules. Journal of Web Semantics 
3(1):41–60, 2005.



ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 154

DL-safe SWRL example

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Unhappy(sebastian) cannot be concluded

{DL-safe
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DL-safe SWRL example

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusions:
dislikes(sebastian,peanutOil)
Conclusions:
dislikes(sebastian,peanutOil)
orderedDish(sebastian,ys)
ThaiCurry(ys)
Dish(ys)

contains(ys,peanutOil)
dislikes(sebastian,ys)

{DL-safe
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Retaining decidability II: DL Rules

• General idea:
Find out which rules can be encoded in OWL (2 DL) anyway

• Man(x) Æ hasBrother(x,y) Æ hasChild(y,z) ! Uncle(x)
– Man u 9hasBrother.9hasChild.> v Uncle

• ThaiCurry(x) ! 9contains.FishProduct(x)
– ThaiCurry v 9contains.FishProduct

• kills(x,x) ! suicide(x) suicide(x) ! kills(x,x)
– 9kills.Self v suicide    suicide v 9kills.Self

Note: with these two axioms, 
suicide is basically the same as kills
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DL Rules: more examples

• NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
– NutAllergic ≡ 9nutAllergic.Self 

NutProduct ≡ 9nutProduct.Self
nutAllergic o U o nutProduct v dislikes

• dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)
– Dish ≡ 9dish.Self 

dislikes o contains– o dish v dislikes 

• worksAt(x,y) Æ University(y) Æ supervises(x,z) Æ PhDStudent(z)
! professorOf(x,z)

– 9worksAt.University ≡ 9worksAtUniversity.Self 
PhDStudent ≡ 9phDStudent.Self 
worksAtUniversity o supervises o phDStudent v professorOf
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DL Rules: definition

• Tree-shaped bodies
• First argument of the conclusion is the root

• C(x) Æ R(x,a) Æ S(x,y) Æ D(y) Æ T(y,a) ! E(x)
– C u 9R.{a} u 9S.(D u 9T.{a}) v E

duplicating
nominals

is
okE E
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DL Rules: definition

• Tree-shaped bodies
• First argument of the conclusion is the root

• C(x) Æ R(x,a) Æ S(x,y) Æ D(y) Æ T(y,a) ! V(x,y)

C u 9R.{a} v 9R1.Self
D u 9T.{a} v 9R2.Self
R1 o S o R2 v V
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DL Rules: definition

• Tree-shaped bodies
• First argument of the conclusion is the root

• complex classes are allowed in the rules

– Mouse(x) Æ 9hasNose.TrunkLike(y) ! smallerThan(x,y)

– ThaiCurry(x) ! 9contains.FishProduct(x)

Note: This allows to reason with unknowns (unlike Datalog)

– allowed class constructors depend on the chosen underlying 
description logic!
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DL Rules: definition

Given a description logic D,
the language D Rules consists of
• all axioms expressible in D,
• plus all rules with

– tree-shaped bodies, where
– the first argument of the conclusion is the root, and
– complex classes from D are allowed in the rules.
– <plus possibly some restrictions concerning e.g. the use of 

simple roles – depending on D>
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The rules hidden in OWL 2: SROIQ Rules

• N2ExpTime complete

• In fact, SROIQ Rules can be translated into SROIQ
i.e. they don't add expressivity.

Translation is polynomial.

• SROIQ Rules are essentially helpful syntactic sugar for OWL 2.
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SROIQ Rules example

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

!not a SROIQ Rule!
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SROIQ Rules normal form

• Each SROIQ Rule can be written ("linearised") such that
– the body-tree is linear,
– if the head is of the form R(x,y), then y is the leaf of the tree, 

and
– if the head is of the form C(x), then the tree is only the root.

• worksAt(x,y) Æ University(y) Æ supervises(x,z) Æ PhDStudent(z)
! professorOf(x,z)

– 9worksAt.University(x) Æ supervises(x,z) Æ PhDStudent(z)
! professorOf(x,z)

• C(x) Æ R(x,a) Æ S(x,y) Æ D(y) Æ T(y,a) ! V(x,y)
– (C u 9R.{a})(x) Æ S(x,y) Æ (D u 9T.{a})(y) ! V(x,y)
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Retaining tractability I: OWL 2 EL Rules

• EL++ Rules are PTime complete

• EL++ Rules offer expressivity which is not readily available in 
EL++.

OWL 2 EL

OWL 2
= SROIQ Rules

OWL 2 EL Rules

>ExpTime

tractable
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OWL 2 EL Rules: normal form

• Every EL++ Rule can be converted into a normal form,where
– occurring classes in the rule body are either atomic or 

nominals,
– all variables in a rule's head occur also in its body, and
– rule heads can only be of one of the forms A(x), 9R.A(x), 

R(x,y), where A is an atomic class or a nominal or > or ?.

• Translation is polynomial.

• 9worksAt.University(x) Æ supervises(x,z) Æ PhDStudent(z)
! professorOf(x,z)

– worksAt(x,y) Æ University(y) Æ supervises(x,z) Æ
PhDStudent(z)

! professorOf(x,z)

• ThaiCurry(x) ! 9contains.FishProduct(x)
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OWL 2 EL Rules in a nutshell

Essentially, OWL 2 EL Rules is

• Binary Datalog with tree-shaped rule bodies, 
• extended by

– occurrence of nominals as atoms and
– existential class expressions in the head.

• The existentials really make the difference.

• Arguably the better alternative to OWL 2 EL (aka EL++)?
– (which is covered anyway)
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Retaining tractability II: DLP 2

• DLP 2 is
– DLP (aka OWL 2 RL) extended with
– DL rules, which use 

• left-hand-side class expressions in the bodies and
• right-hand-side class expressions in the head.

• Polynomial transformation into 5-variable Horn rules.

• PTime.

• Quite a bit more expressive than DLP / OWL 2 RL ...
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Retaining tractability III: ELP

Putting it all together:

• ELP is
– OWL 2 EL Rules +
– a generalisation of DL-safety +
– variable-restricted DL-safe Datalog +
– role conjunctions (for simple roles).

• PTime complete.
• Contains OWL 2 EL and OWL 2 RL.
• Covers variable-restricted Datalog.
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DL-safe variables

• A generalisation of DL-safety.
• DL-safe variables are special variables which bind only to named 

individuals (like in DL-safe rules).
• DL-safe variables can replace individuals in EL++ rules.

• C(x) Æ R(x,xs) Æ S(x,y) Æ D(y) Æ T(y,xs) ! E(x)
with xs a safe variable is allowed, because

C(x) Æ R(x,a) Æ S(x,y) Æ D(y) Æ T(y,a) ! E(x)
is an EL++ rule.

duplicating
nominals

is
okE E
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Variable-restricted DL-safe Datalog

• n-Datalog is Datalog, where the number of variables occurring in 
rules is globally bounded by n.

• complexity of n-Datalog is PTime (for fixed n)
– (but exponential in n)

• in a sense, this is cheating.
• in another sense, this means that using a few DL-safe Datalog 

rules together with an EL++ rules knowledge base shouldn't 
really be a problem in terms of reasoning performance.
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Role conjunctions

• orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

• In fact, role conjunctions can also be added to OWL 2 DL without 
increase in complexity.

• Sebastian Rudolph, Markus Krötzsch, Pascal Hitzler, Cheap Boolean 
Role Constructors for Description Logics. In: Steffen Hölldobler and 
Carsten Lutz and Heinrich Wansing (eds.), Proceedings of 11th 
European Conference on Logics in Artificial Intelligence (JELIA), 
volume 5293 of LNAI, pp. 362-374. Springer, September 2008. 
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Retaining tractability III: ELP

• ELPn is
– OWL 2 EL Rules generalised by DL-safe variables +

– DL-safe Datalog rules with at most n variables +
– role conjunctions (for simple roles).

• PTime complete (for fixed n).
– exponential in n

• Contains OWL 2 EL and OWL 2 RL.
• Covers all Datalog rules with at most n variables. (!)
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ELP example

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

not an EL++ rule

[okay]

[okay – role conjunction]
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ELP example

• dislikes(x,z) Æ Dish(y) Æ contains(y,z) ! dislikes(x,y)
as SROIQ rule translates to

Dish ≡ 9dish.Self 
dislikes o contains– o dish v dislikes

but we don't have inverse roles in ELP!

• solution: make z a DL-safe variable:

dislikes(x,!z) Æ Dish(y) Æ contains(y,!z) ! dislikes(x,y)

this is fine 



ISWC2010, Shanghai, China – November 2010 – Pascal Hitzler 181

DL-safe SWRL example

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,!z) Æ Dish(y) Æ contains(y,!z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusions:
dislikes(sebastian,peanutOil)
Conclusions:
dislikes(sebastian,peanutOil)
orderedDish(sebastian,ys)
ThaiCurry(ys)
Dish(ys)

contains(ys,peanutOil)
dislikes(sebastian,ys)
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ELP example

NutAllergic(sebastian)
NutProduct(peanutOil)

9orderedDish.ThaiCurry(sebastian)

ThaiCurry v 9contains.{peanutOil}
> v 8orderedDish.Dish

NutAllergic(x) Æ NutProduct(y) ! dislikes(x,y)
dislikes(x,!z) Æ Dish(y) Æ contains(y,!z) ! dislikes(x,y)

orderedDish(x,y) Æ dislikes(x,y) ! Unhappy(x)

Conclusion: Unhappy(sebastian)
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ELP Reasoner ELLY

• Implementation currently being finalised.
• Based on IRIS Datalog reasoner.
• In cooperation with STI Innsbruck (Barry Bishop, Daniel Winkler, 

Gulay Unel).
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The Big Picture

ELP

OWL 2 EL

OWL 2
= SROIQ Rules

OWL 2 EL Rules

>ExpTime

tractable
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Closed World and ELP

• There's an extension of ELP using (non-monotonic) closed-
world reasoning – based on a well-founded semantics for hybrid 
MKNF knowledge bases.

• Matthias Knorr, Jose Julio Alferes, Pascal Hitzler, A Coherent Well-
founded model for Hybrid MKNF knowledge bases. In: Malik Ghallab, 
Constantine D. Spyropoulos, Nikos Fakotakis, Nikos Avouris (eds.), 
Proceedings of the 18th European Conference on Artificial 
Intelligence, ECAI2008, Patras, Greece, July 2008. IOS Press, 2008, 
pp. 99-103. 
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The Big Picture II

ELP

OWL 2 EL

OWL 2
= SROIQ Rules

OWL 2 EL Rules

>ExpTime

tractable

data-tractable

hybrid ELP
(local

closed
world)
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Thanks!

http://www.semantic-web-book.org/page/ISWC2010_Tutorial
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References OWL and Rules

• Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, Description 
Logic Rules. In Malik Ghallab, Constantine D. Spyropoulos, Nikos 
Fakotakis, Nikos Avouris, eds.: Proceedings of the 18th European 
Conference on Artificial Intelligence (ECAI-08), pp. 80–84. IOS Press 
2008. 

• Markus Krötzsch, Sebastian Rudolph, Pascal Hitzler, ELP: Tractable 
Rules for OWL 2. In Amit Sheth, Steffen Staab, Mike Dean, Massimo 
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Thirunarayan, eds.: Proceedings of the 7th International Semantic 
Web Conference (ISWC-08), pp. 649–664. Springer 2008. 
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OWL-DL with Rules. Journal of Web Semantics 3(1):41–60, 2005.
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See also our books

• Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, 
York Sure, 
Semantic Web – Grundlagen. Springer, 2008.
http://www.semantic-web-grundlagen.de/

• Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph,
Foundations of Semantic Web Technologies.
Chapman & Hall/CRC, 2009.
http://www.semantic-web-book.org/wiki/FOST

(Grab a flyer.)
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