Knowledge Representation for the Semantic Web

Winter Quarter 2010

Slides 3 – 01/19/2010

Pascal Hitzler
Kno.e.sis Center
Wright State University, Dayton, OH
http://www.knoesis.org/pascal/
Slides are based on

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph

Foundations of Semantic Web Technologies

Chapman & Hall/CRC, 2010

Flyer with special offer is available.

http://www.semantic-web-book.org
Today: RDF syntax

+ conjunctive queries for OWL
Today’s Session: RDF

1. Motivation
2. Triples and Graphs
3. RDF syntaxes: Turtle and RDF/XML
4. Datatypes
5. n-ary relationships
6. Empty nodes
7. Lists
8. Class project
9. Class presentation
Two XML Problems

- How do you encode the piece of knowledge “The book FOST is published by CRC Press”

- `<book>
 <title>FOST</title>
 <publisher>CRC Press</publisher>
 </book>`

- `<publisher>
 <name>CRC Press</name>
 <book><title>FOST</title><book>
 </publisher>

- etc.
Two XML Problems

• Merging trees is rather cumbersome and the result isn’t always clear.

 – <publisher>
 <name>CRC Press</name>
 <book><title>FOST</title><book>
 </publisher>

 – <book>
 <title>Semantic Web</title>
 <publisher>Springer</publisher>
 </book>
RDF idea

- Use (directed) graphs as data model
• “Resource Description Framework”

• W3C Recommendation 2004
 http://www.w3.org/RDF/

• RDF is a data model
 – originally for describing metadata for web pages, but has
grown beyond that
 – structured information
 – universal, machine-readable data exchange format
 – main syntax uses XML for serialization
Table of contents: RDF

1. Motivation
2. Triples and Graphs
3. RDF syntaxes: Turtle and RDF/XML
4. Datatypes
5. n-ary relationships
6. Empty nodes
7. Lists
8. Class project
9. Class presentation
RDF components

• URIs
 – for referencing resources

• Literals
 – data values

• Empty nodes
 – talking about something which doesn’t have a name (or the name of which isn’t known)
Literals

- for representing data values
- encoded as strings
- interpreted by means of datatypes
- literals without datatype are treated the same as strings
Graphs as sets of triples

- there are several possibilities for representing graphs
- we use: graph as list of (node-edge-node) triples
RDF triples

- An RDF triple consists of

 Subject Predicate Object

 (borrowed from linguistics)

- allowed are:
 - In the subject: URIs and empty nodes
 - In the predicate: URIs (usually called properties)
 - In the object: URIs and empty nodes and literals

- Note that the graph can be reconstructed from the list of triples.
Table of contents: RDF

1. Motivation
2. Triples and Graphs
3. RDF syntaxes: Turtle and RDF/XML
4. Datatypes
5. n-ary relationships
6. Empty nodes
7. Lists
8. Class project
9. Class presentation
Turtle – Terse RDF Triple Language

- simple syntax for RDF
- triples are directly listed as such
 - URIs are in <angle brackets>
 - Literals are “enclosed in quotes”
 - triples end with a full-stop .
 - whitespace (blanks, line feeds) is ignored

```
<http://semantic-web-book.org/uri>
<http://semantic-web-book.org/uri>
  <http://example.org/title>
    "Foundations of Semantic Web Technologies" .
<http://crcpress.com/uri>
  <http://example.org/name>   "CRC Press" .
```
• shortcuts for prefixes

@prefix ex: <http://example.org/> .
@prefix crc: <http://crcpress.com/> .

crc:uri ex:name "CRC Press" .
Turtle

@prefix ex: <http://example.org/> .
@prefix crc: <http://crcpress.com/> .

crc:uri ex:name "CRC Press" .

- grouping of triples with the same subject
- grouping of triples with same subject and predicate

@prefix ex: <http://example.org/> .
@prefix crc: <http://crcpress.com/> .

book:uri ex:publishedBy crc:uri ;
ex:title "Foundations of Semantic Web Technologies" .
crc:uri ex:name "CRC Press", "CRC" .
XML syntax for RDF

- Turtle is easy to read and write
- But XML is the basis for data transfer on the web
- There’s a lot of tool (and programming library) support for XML
- Hence, the main syntax for RDF is XML-based.
- Turtle is not a W3C recommendation
- The normative syntax for RDF is it’s XML syntax
XML syntax for RDF

• namespaces are used for disambiguating tags
• tags belonging to the RDF language come with a fixed namespace, usually abbreviated 'rdf'

```xml
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:ex = "http://example.org/">

    <rdf:Description rdf:about="http://semantic-web-book.org/uri">
        <ex:publishedBy>
            <rdf:Description rdf:about="http://crcpress.com/uri">
            </rdf:Description>
        </ex:publishedBy>
    </rdf:Description>
</rdf:RDF>
```
XML syntax for RDF

```
<rdf:Description rdf:about="http://semantic-web-book.org/uri">
  <ex:publishedBy>
    <rdf:Description rdf:about="http://crcpress.com/uri">
    </rdf:Description>
  </ex:publishedBy>
</rdf:Description>
```
XML syntax for RDF

- Untyped literals can be left as free text
- A subject can contain several property elements
- Object-descriptions can be used as subject-descriptions for further triples

```
<rdf:Description rdf:about="http://semantic-web-book.org/uri">
  <ex:title>Foundations of Semantic Web Technologies</ex:title>
  <ex:publishedBy>
    <rdf:Description rdf:about="http://crcpress.com/uri">
      <ex:name>CRC Press</ex:name>
    </rdf:Description>
  </ex:publishedBy>
</rdf:Description>
```
XML syntax for RDF

- Equivalent representation of literals using XML attributes
 - the attribute-name is then the property-URI

- Equivalent representation of objects by giving their URIs as value of a rdf:resource attribute within a property tag.

```xml
<rdf:Description rdf:about="http://semantic-web-book/uri"
    ex:title= "Foundations of Semantic Web Technologies">
  <ex:publishedBy rdf:resource="http://crcpress.com/uri" />
</rdf:Description>

<rdf:Description rdf:about="http://crcpress.com/uri"
    ex:Name="CRC Press" />
```
XML syntax for RDF

- The use of namespaces is essential since the use of the colon `:` in XML attributes is not allowed unless it is used with a namespace.
- Problem: namespaces cannot be used in values of XML attributes: `rdf:about="book:uri"` is **wrong** since ‘book’ would be interpreted in the sense of a URI schema.
- Solution: use XML ENTITYs.

```xml
<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE rdf:RDF[
]

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:ex ="http://example.org/">

    <rdf:Description rdf:about="&book;uri">
        <ex:title>Foundations of Semantic Web Technologies</ex:title>
    </rdf:Description>

</rdf:RDF>
```
XML Syntax for RDF

- Use of the base namespace

```xml
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
   xmlns:ex ="http://example.org/"

   <rdf:Description rdf:about="uri">
       <ex:publishedBy rdf:resource="http://crcpress.com/uri" />
   </rdf:Description>

</rdf:RDF>
```
Table of contents: RDF

1. Motivation
2. Triples and Graphs
3. RDF syntaxes: Turtle and RDF/XML
4. Datatypes
5. n-ary relationships
6. Empty nodes
7. Lists
8. Class project
9. Class presentation
Datatypes in RDF

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
<http://www.w3.org/TR/rdf-primer>
 <http://example.org/title> "RDF Primer"^^xsd:string ;
 <http://example.org/publicationDate> "2004-02-10"^^xsd:date .

<!-- RDF Description -->
<rdf:Description rdf:about="http://www.w3.org/TR/rdf-primer"
 xmlns:ex="http://example.org"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
>
 <ex:title rdf:datatype="http://www.w3.org/2001/XMLSchema#string">RDF Primer</ex:title>
 <ex:publicationDate rdf:datatype="http://www.w3.org/2001/XMLSchema#date">
 2004-02-10
 </ex:publicationDate>
</rdf:Description>
Datatypes

• usually use of XML Schema datatype
• Note that the same data value can have different representations:
 "3.14"^^xsd:decimal is the same as "+03.14"^^xsd:decimal but
 "3.14"^^xsd:string is not the same as "+03.14"^^xsd:string
• there is only one required datatype in RDF, called rdf:XMLLiteral
 – arbitrary (balanced) XML fragments
 – special syntax:

```xml
<rdf:Description rdf:about="http://semantic-web-book/uri">
  <ex:title rdf:parseType="Literal">
    Foundations of
  </br />
  <b>Semantic Web Technologies</b>
</ex:title>
</rdf:Description>
```
Table of contents : RDF

1. Motivation
2. Triples and Graphs
3. RDF syntaxes: Turtle and RDF/XML
4. Datatypes
5. n-ary relationships
6. Empty nodes
7. Lists
8. Class project
9. Class presentation
What is wrong with these?

@prefix ex: <http://example.org/> .
ex:Chutney ex:hasIngredient "1lb green mango",
"1tsp. Cayenne pepper" .

@prefix ex: <http://example.org/> .
ex:Chutney ex:ingredient ex:greenMango; ex:amount "1lb" ;
ex:ingredient ex:CayennePepper; ex:amount "1tsp." .
It’s a ternary relationship!

@prefix ex: <http://example.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
ex:Chutney ex:hasIngredient ex:ingredient1 .
ex:ingredient1 rdf:value ex:greenMango ;
ex:amount "1 lb" .
<table>
<thead>
<tr>
<th></th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Triples and Graphs</td>
</tr>
<tr>
<td>3</td>
<td>RDF syntaxes: Turtle and RDF/XML</td>
</tr>
<tr>
<td>4</td>
<td>Datatypes</td>
</tr>
<tr>
<td>5</td>
<td>n-ary relationships</td>
</tr>
<tr>
<td>6</td>
<td>Empty nodes</td>
</tr>
<tr>
<td>7</td>
<td>Lists</td>
</tr>
<tr>
<td>8</td>
<td>Class project</td>
</tr>
<tr>
<td>9</td>
<td>Class presentation</td>
</tr>
</tbody>
</table>
It doesn’t need a name :)

http://example.org/Chutney

http://example.org/hasIngredient

http://example.org/ingredient_1

http://example.org/hasIngredient

http://example.org/ingredient

http://example.org/amount

1 lb

1 lb
Blank nodes syntax

```xml
<rdf:Description rdf:about="http://example.org/Chutney">
  <ex:hasIngredient rdf:nodeID="id1" />
</rdf:Description>

<rdf:Description rdf:nodeID="id1">
  <ex:ingredient rdf:resource="http://example.org/greenMango" />
  <ex:amount>1lb</ex:amount>
</rdf:Description>
```

shortcut:

```xml
<rdf:Description rdf:about="http://example.org/Chutney">
  <ex:hasIngredient rdf:parseType="Resource">
    <ex:ingredient rdf:resource="http://example.org/greenMango" />
    <ex:amount>1lb</ex:amount>
  </ex:hasIngredient>
</rdf:Description>
```
Blank nodes syntax

Turtle:

```turtle
@prefix ex: <http://example.org/> .
ex:Chutney ex:hasIngredient _:id1 .
_:id1 ex:ingredient ex:greenMango; ex:amount "1lb" .
```
Blank nodes syntax

@prefix ex: <http://example.org/> .
ex:Chutney ex:hasIngredient _:id1 .
_:id1 ex:ingredient ex:greenMango; ex:amount "1lb" .

shortcut:

@prefix ex: <http://example.org/> .
ex:Chutney ex:hasIngredient
[ex:ingredient ex:greenMango; ex:amount "1lb"] .
Table of contents: RDF

1. Motivation
2. Triples and Graphs
3. RDF syntaxes: Turtle and RDF/XML
4. Datatypes
5. n-ary relationships
6. Empty nodes
7. Lists
8. Class project
9. Class presentation
Open lists (containers)

```xml
<rdf:Description rdf:about="http://semantic-web-book.org/uri">
  <ex:authors>
    <rdf:Seq>
    </rdf:Seq>
  </ex:authors>
</rdf:Description>
```
Types of containers

• “open”: new elements can be added.

• rdf:Seq – ordered list
• rdf:Bag – unordered set
• rdf:Alt – set of alternatives

• Lists are actually hardly reflected in the formal semantics (more about this later)
Closed lists (collections)

```xml
<rdf:Description rdf:about="http://semantic-web-book/uri">
  <ex:authors rdf:parseType="Collection">
    <rdf:Description>
    <rdf:Description>
    <rdf:Description>
  </ex:authors>
</rdf:Description>
```

book:uri <http://example.org/authors>
Closed lists (collections)
Comparison
Table of contents: RDF

1. Motivation
2. Triples and Graphs
3. RDF syntaxes: Turtle and RDF/XML
4. Datatypes
5. n-ary relationships
6. Empty nodes
7. Lists
8. Class project
9. Class presentation
Class project – status

- Aircrafts
- Alcoholic Beverages
- American Football
- Cars and Vehicles
- Computer Science
- Cuisine
- Networks
- Parasite lifecycle
- People at University
- Trust

- Be punctual!
- Send me readable input!
Class project: next step

- re-check your taxonomy for correctness!
- add ca. 10 instances to your taxonomy
- add ca. 8 subject-predicate-object triples to your taxonomy, reusing the instances you created, and inventing suitable predicates (RDF properties). Use Turtle syntax for these.

  ```turtle
  anne motherOf merula .
  ```
- introduce changes to your ontology in whatever way needed
- document briefly what you have done and why (in particular if you find bugs!)
- send to me by Thursday noon
Table of contents: RDF

1. Motivation
2. Triples and Graphs
3. RDF syntaxes: Turtle and RDF/XML
4. Datatypes
5. n-ary relationships
6. Empty nodes
7. Lists
8. Class project
9. Class presentation
Class presentations – scheduled

- RDFa – embedding RDF in HTML (W3C standard)
 Pavan, Thursday 28th of January

- Scalable Distributed Reasoning using MapReduce (Urbani, Kotoulas, Oren, van Harmelen, ISWC2009)
 Wenbo, Thursday 28th of January

- Semantic MediaWiki
 Vinh, to be scheduled
Class presentations – open topics

Applications:
• Linked Open Data (paper by Heath, Bizer, Berners-Lee, IJSWIS 2009)
• FOAF (friend of a friend social networking vocabulary)
• The SNOMED ontology (major biomedical ontology)
• Yahoo! Search Monkey (enhancing web search)

Standards:
• SKOS – data model for sharing and linking knowledge organization systems via the Web (W3C standard)

Research papers:
• Parallel Materialization of the Finite RDFS Closure for Hundreds of Millions of Triples (Weaver, Hendler, ISWC2009)
Class presentations – open topics

Tools:
• Protege – Ontology editing tool
• Jena – Java framework for Semantic Web by HP
• RDF triple stores (Virtuoso, Redland, Sesame, AllegroGraph)
Thursday 21st of January: RDFS Part I
Tuesday 26th of January: RDF and RDFS Semantics
Thursday 28st of January: 2 class presentations
Tuesday 2nd of February: Exercise session

Estimated breakdown of sessions:
- Intro + XML: 2
- RDF: 3
- OWL and Logic: 5
- SPARQL and Querying: 2
- Class Presentations: 3
- Exercise sessions: 3