
www.kit.edu KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH)

OWL 2 Rules (Part 1)

Tutorial at ESWC2009
May 31, 2009

 Pascal Hitzler

 Markus Krötzsch

 Sebastian Rudolph

AIFB, Universität Karlsruhe (TH)

http://www.pascal-hitzler.de
http://korrekt.org

http://www.sebastian-rudolph.de

2

Outline Part 1

   The Early Days of KR: Rule-Based Formalisms
   OWL 2 DL – the new DL-based Web Ontology Language
   Semantics of OWL DL
   Tractable Fragments

3

The Early Days of KR:
Rule-Based Formalisms
   rules provide a natural way of modelling “if-then“ knowledge
   general form of a (Horn) rule:

 Body ! Head

   body: (possibly empty) conjunction of atoms, head: at most one atom
   Examples:

 8x8y(married(x,y) Æ Woman(x) ! Man(y))

 8x(Man(x) Æ Woman(x) ! false)

 true ! married(pascal,anne)

4

The Early Days of KR:
Rule-Based Formalisms
   rules provide a natural way of modelling “if-then“ knowledge
   general form of a (Horn) rule:

 Body ! Head

   body: (possibly empty) conjunction of atoms, head: at most one atom
   Examples:

 8x8y(married(x,y) Æ Woman(x) ! Man(y))

 8x(Man(x) Æ Woman(x) ! false)

 true ! married(pascal,anne)

5

On the Semantics of Rules

   syntactically, rules are just FOL formulae
   hence they can be interpreted under FOL standard semantics
   other (non-monotonic) interpretations are possible:

   well-founded semantics
   stable model semantics
   answer set semantics

   in the case of Horn rules, they all coincide (differences if negation of
atoms is allowed)

   in this tutorial, we strictly adhere to FOL (=open-world) semantics

6

What We Cannot Say with Rules

   with rules, one cannot require the existence of individuals with certain
properties except by explicitly naming them

   i.e. we can express that there are two persons that are married by
giving them names (say, person1 and person2):

true ! married(person1,person2)

   but we cannot express something like:
 “every husband is married to somebody“

wrong:
husband(x) ! married(x,person)

That‘s where
OWL comes in!

7

What OWL Talks About (Semantics)

   both OWL 1 DL and OWL 2 DL are based on description logics
   here, we will treat OWL from the “description logic viewpoint“:

   we use DL syntax
   we won‘t talk about datatypes and non-semantic features of OWL

   OWL (DL) ontologies talk about worlds that contain

Institute – Author – Title – other informations

KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH)

individuals
 constants: pascal, anne

classes / concepts
 unary predicates:
 male(_), female(_)

properties / roles
 binary predicates:
 married(_,_)

8

Assertional Knowledge

   asserts information about concrete named individuals

   class membership: Male(pascal)

<Male rdf:about=“pascal"/>!

rule version: ! Male(pascal)

   property membership: married(anne,pascal)

<rdf:Description rdf:about=“anne“>!
 <married rdf:resource=“pascal"/>!
</rdf:Description>

rule version: ! married (anne,pascal)

married

That‘s all what can be said with RDF!

9

Terminological Knowledge –
 Subclasses and Subproperties
   information about how classes and properties relate in general

   subclass: Child v Person

<owl:Class rdf:about=“Child“>!
 <rdfs:subClassOf rdf:resource="Person"/>!
 </owl:Class>

 rule version: Child(x) ! Person(x)

   subproperty: hasHusband v married

<owl:ObjectProperty rdf:about="hasHusband“>!
 <rdfs:subPropertyOf rdf:resource=“married"/>!
 </owl:ObjectProperty>

rule version: hasHusband(x,y) ! married (x,y)

married
hasHusband

10

Class Constructors

   build new classes from class, property and individual names
   union: Actor t Politician

<owl:unionOf rdf:parseType="Collection“>!
 <owl:Class rdf:about="Actor"/>!
 <owl:Class rdf:about="Politician"/>!
</owl:unionOf>

   intersection: Actor u Politician

<owl:intersectionOf rdf:parseType="Collection“>!
 <owl:Class rdf:about="Actor"/>!
 <owl:Class rdf:about="Politician"/>!
</owl:intersectionOf>

11

   build new classes from class, property and individual names

   complement: ¬Politician

<owl:complementOf !
 rdf:resource=“Politician“>!

   closed classes: {anne,merula,pascal}

<owl:oneOf rdf:parseType="Collection“>!
 <rdf:Description rdf:about=“anne"/>!
 <rdf:Description rdf:about=“merula"/>!
 <rdf:Description rdf:about=“pascal"/>!
</owl:oneOf>

Class Constructors

12

   build new classes from class, property and individual names
   existential quantification: 9hasChild.Female

<owl:Restriction>!
 <owl:onProperty rdf:resource="hasChild"/>!
 <owl:someValuesFrom rdf:resource=“Female"/>!
</owl:Restriction>

Class Constructors

13

   build new classes from class, property and individual names
   universal quantification: 8hasChild.Female

<owl:Restriction>!
 <owl:onProperty rdf:resource="hasChild"/>!
 <owl:allValuesFrom rdf:resource=“Female"/>!
</owl:Restriction>

Class Constructors

14

   build new classes from class, property and individual names
   cardinality restriction: ≥2hasChild.Female

<owl:Restriction>!
 <owl:minQualifiedCardinality rdf:datatype="&xsd;nonNegativeInteger“>!
 2 </owl:minQualifiedCardinality>!
 <owl:onProperty rdf:about="hasChild"/>!
 <owl:onClass rdf:about=“Female"/>!
</owl:Restriction>

Class Constructors

15

   build new classes from class, property and individual names
   Self-restriction: 9killed.Self

<owl:Restriction>!
 <owl:onProperty rdf:resource=“killed"/>!
 <owl:hasSelf rdf:datatype="&xsd;boolean“>!
 true!
 </owl:hasSelf>!
</owl:Restriction>!

Class Constructors

killed

16

   special classes
   top class: >

 ...class containing all individuals of the domain

owl:Thing!

   bottom class: ?
 ...“empty“ class containing no individuals

owl:Nothing!

   universal property: U
 ...property linking every individual to every individual

owl:topObjectProperty!

Special Classes and Properties

17

   allow to infer the existence of a property from a chain of properties:

   hasParent ± hasParent v hasGrandparent
 rule version: hasParent(x,y) Æ hasParent(y,z) ! hasGrandparent(x,z)

 <rdf:Description rdf:about="hasGrandparent">
 <owl:propertyChainAxiom rdf:parseType="Collection">
 <owl:ObjectProperty rdf:about="hasParent"/>
 <owl:ObjectProperty rdf:about="hasParent"/>
 </owl:propertyChainAxiom>
 </rdf:Description>

 hasGrandparent

Property Chain Axioms

hasParent hasParent

18

   allow to infer the existence of a property from a chain of properties:

   hasEnemy ± hasFriend v hasEnemy
 rule version: hasEnemy(x,y) Æ hasFriend(y,z) ! hasEnemy(x,z)

 <rdf:Description rdf:about="hasEnemy">
 <owl:propertyChainAxiom rdf:parseType="Collection">
 <owl:ObjectProperty rdf:about="hasEnemy"/>
 <owl:ObjectProperty rdf:about="hasFriend"/>
 </owl:propertyChainAxiom>
 </rdf:Description>

Property Chain Axioms

 hasEnemy
hasEnemy hasFriend

19

   arbitrary property chain axioms lead to undecidability
   restriction: set of property chain axioms has to be regular

   there must be a strict linear order ≺ on the properties
   every property chain axiom has to have one of the following forms:

R ± R v R S– v R S1 ± S2 ± ... ± Sn v R
R ± S1 ± S2 ± ... ± Sn v R S1 ± S2 ± ... ± Sn ± R v R

   thereby, Si ≺ R for all i= 1, 2, . . . , n.

   Example 1: R ± S v R S ± S v S R ± S ± R v T
 regular with order S ≺ R ≺ T

   Example 2: R ± T ± S v T
 not regular because form not admissible

   Example 3: R ± S v S S ± R v R
 not regular because no adequate order exists

Property Chain Axioms: Caution! (1/2)

20

   combining property chain axioms and cardinality constraints may lead
to undecidability

   restriction: use only simple properties in cardinality expressions (i.e.
those which cannot be – directly or indirectly – inferred from property
chains)

   technically:
   for any property chain axiom S1 ± S2 ± ... ± Sn v R with n>1, R is non-

simple
   for any subproperty axiom S v R with S non-simple, R is non-simple
   all other properties are simple

   Example: Q ± P v R R ± P v R R v S P v R Q v S
 non-simple: R, S simple: P, Q

Property Chain Axioms: Caution! (2/2)

21

Property Characteristics

   a property can be
   the inverse of another property: hasParent ´ parentOf –

 rule version:
 hasParent(x,y) ! parentOf(y,x)
 parentOf(x,y) ! hasParent(y,x)

   disjoint with another property: Disj(hasParent,parentOf)
rule version:
 hasParent(x,y), parentOf(x,y) !

   other property characteristics that can be expressed:
(inverse) functionality, transitivity, symmetry, asymmetry, reflexivity,
irreflexivity

hasParent

parentOf

hasParent

parentOf

22

OWL 2 DL – Semantics

   model-theoretic semantics
   starts with interpretations
   an interpretation maps

 individual names, class names and property names...

...into a domain

.I

aI CI

RI

Δ
II IC IR

23

OWL 2 DL – Semantics

   mapping is extended to complex class expressions:
   >I = ∆I ?I = ∅
   (C u D)I = CI Å DI (C t D)I = CI [DI (¬C)I = ∆I \ CI

   8R.C = { x | 8(x,y) ∈ RI → y ∈ CI} 9R.C = { x | 9(x,y) ∈ RI Æ y ∈ CI}
   ≥nR.C = { x | #{ y | (x,y) ∈ RI Æ y ∈ CI} ≥ n }
   ≤nR.C = { x | #{ y | (x,y) ∈ RI Æ y ∈ CI} ≤ n }

   ...and to role expressions:
   UI = ∆I × ∆I (R–)I = { (y,x) | (x,y) ∈ RI }

   ...and to axioms:
   C(a) holds, if aI ∈ CI R(a,b) holds, if (aI,bI) ∈ RI
   C v D holds, if CI ⊆ DI R v S holds, if RI ⊆ SI

   Disj(R,S) holds if RI Å SI = ∅
   S1 ± S2 ± ... ± Sn v R holds if S1

I ± S2
I ± ... ± Sn

I ⊆ RI

24

OWL 2 DL – Alternative Semantics

   but often OWL 2 DL is said to be a fragment of FOL...
   yes, there is a translation of OWL 2 DL into FOL

   ...which (interpreted under FOL semantics) coincides with the
definition just given.

25

OWL 2 Profiles

   OWL 2 DL is very expressive (although decidable)
   tool support for full OWL 2 DL difficult to achieve

   complexity for standard reasoning tasks: N2ExpTime
   scalability cannot be guaranteed

   idea: identify subsets of OWL 2 DL which are
   still sufficiently expressive
   of lower complexity (preferably in PTime)
   computationally easier to handle

   OWL 2 Profiles:
   OWL EL
   OWL RL
   OWL QL

26

OWL 2 EL

   allowed:
   subclass axioms with intersection, existential quantification, top, bottom

   closed classs must have only one member
   property chain axioms, range restrictions (under certain conditions)

   disallowed:
   negation, disjunction, arbitrary universal quantification, role inverses

 u9>? v u9>?

   Reasoning is PTime complete
   Examples: 9has.Sorrow v 9has.Liqueur > v 9hasParent.Person

 9married.> u CatholicPriest v ? German v 9knows.{angela}
 hasParent ± hasParent v hasGrandparent

27

OWL 2 RL

   motivated by the question: what fraction of OWL 2 DL can be
expressed by rules (with equality)?

   examples:
   9parentOf.9parentOf.> v Grandfather

 rule version: parentOf(x,y) Æ parentOf(y,z) ! Grandfather(x)
   Orphan v 8hasParent.Dead

 rule version: Orphan(x) Æ hasParent(x,y) ! Dead(y)
   Monogamous v ≤1married.Alive

 rule version:
Monogamous(x) Æ married(x,y) Æ Alive(y) Æ married(x,z) Æ Alive(z)! y=z

   childOf ± childOf v grandchildOf
 rule version: childOf(x,y) Æ childOf(y,z) ! grandchildOf(x,z)

   Disj(childOf,parentOf)
 rule version: childOf(x,y) Æ parentOf(x,y) !

28

OWL 2 RL

   syntactic characterization:
   essentially, all axiom types are allowed
   disallow certain constructors on lhs and rhs of subclass statements

 8 ¬ v 9 t
   cardinality restrictions: only on rhs and only ≤1 and ≤0 allowed
   closed classes: only with one member

   Reasoning is PTime complete
   Example Ontology: SWRC

29

OWL 2 QL

   motivated by the question: what fraction of OWL 2 DL can be
captured by standard database technology?

   formally: query answering LOGSPACE w.r.t. data
 (via translation into SQL)

   allowed:
   subproperties, domain, range
   subclass statements with

   left hand side: class name or expression of type 9r.>
   right hand side: intersection of class names, expressions of type 9r.C and

negations of lhs expressions
   no closed classes!

   Example:
 9married.> v ¬Free u 9has.Sorrow

30

OWL 2 Reasoner

   OWL 2 DL:
   Pellet http://clarkparsia.com/pellet/
   HermiT http://www.hermit-reasoner.com/

   OWL 2 EL:
   CEL http://code.google.com/p/cel/

   OWL 2 RL:
   essentially any rule engine

   OWL 2 QL:
   essentially any SQL engine (with a bit of query rewriting on top)

31

References

   OWL 2 W3C Documentation
   http://www.w3.org/TR/owl2-overview/

   Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, York Sure,
Semantic Web – Grundlagen. Springer, 2008.
http://www.semantic-web-grundlagen.de/

   Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph,
Foundations of Semantic Web Technologies.
CRC Press, 2009.
http://www.semantic-web-book.org/
(Grab a flyer from us.)

32

Thanks!

http://semantic-web-grundlagen.de/wiki/ESWC09_Tutorial

