Knowledge Representation for the Semantic Web

Winter Quarter 2012

Slides 10 - 02/21/2012

Pascal Hitzler

O12

Kno.e.sis Center

Wright State University, Dayton, OH

http://www.knoesis.org/pascal/

Textbook (required)

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph

Foundations of Semantic Web Technologies

Chapman & Hall/CRC, 2010

Choice Magazine Outstanding Academic Title 2010 (one out of seven in Information & Computer Science)

http://www.semantic-web-book.org

Today: Reasoning with OWL

A Reasoning Problem

A is a logical consequence of K
written K ⊨ A
if and only if
every model of K is a model of A.

- To show an entailment, we need to check all models?
- But that's infinitely many!!!

A Reasoning Problem

We need algorithms which do not apply the model-based definition of logical consequence in a naive manner.

These algorithms should be syntax-based. (Computers can only do syntax manipulations.)

Luckily, such algorithms exist!

However, their correctness (soundness and completeness) needs to be proven formally.

Which is often a non-trivial problem requiring substantial mathematical build-up.

We won't do the proofs here.

Contents

- Important inference problems
- Tableaux algorithm for ALC
- Tableaux algorithm for SHIQ

Important Inference Problems

Global consistency of a knowledge base.
 KB ⊨ false?

– Is the knowledge base meaningful?

• Class consistency $C \equiv \bot$?

– Is C necessarily empty?

Class inclusion (Subsumption)
 C □ D?

Structuring knowledge bases

• Class equivalence $C \equiv D$?

– Are two classes in fact the same class?

Class disjointnessC □ D = ⊥?

– Do they have common members?

Class membership C(a)?

– Is a contained in C?

Instance Retrieval "find all x with C(x)"

Find all (known!) individuals belonging to a given class.

Reduction to Unsatisfiability

- Global consistency of a knowledge base.
 - Failure to find a model.
- Class consistency
 - KB ∪ {C(a)} unsatisfiable
- Class inclusion (Subsumption)
 - KB ∪ {C □ ¬D(a)} unsatisfiable (a new)
- Class equivalence
 - C ⊑ D und D ⊑ C
- Class disjointness
 - KB ∪ {(C □ D)(a)} unsatisfiable (a new)
- Class membership
 - KB ∪ {¬C(a)} unsatisfiable
- Instance Retrieval "find all x with C(x)"
 - Check class membership for all individuals.

KB unsatisfiable

$$C \equiv \bot$$
?

$$C \equiv D$$
?

$$C \sqcap D = \bot$$
?

C(a)?

Reduction to Satisfiability

- We will present so-called tableaux algorithms.
- They attempt to construct a model of the knowledge base in a "general, abstract" manner.
 - If the construction fails, then (provably) there is no model –
 i.e. the knowledge base is unsatisfiable.
 - If the construction works, then it is satisfiable.

→ Hence the reduction of all inference problems to the checking of unsatisfiability of the knowledge base!

Contents

- Important inference problems
- Tableaux algorithm for ALC
- Tableaux algorithm for SHIQ

ALC tableaux: contents

- Transformation to negation normal form
- Naive tableaux algorithm
- Tableaux algorithm with blocking

Transform. to negation normal form

Given a knowledge base K.

- Replace C ≡ D by C ⊑ D and D ⊑ C.
- Replace C

 □ D by ¬C □ D.
- Apply the equations on the next slide exhaustively.

Resulting knowledge base: NNF(K)

Negation normal form of K.

Negation occurs only directly in front of atomic classes.

$$\operatorname{NNF}(C) = C \qquad \text{if } C \text{ is a class name} \\ \operatorname{NNF}(\neg C) = \neg C \qquad \text{if } C \text{ is a class name} \\ \operatorname{NNF}(\neg \neg C) = \operatorname{NNF}(C) \\ \operatorname{NNF}(C \sqcup D) = \operatorname{NNF}(C) \sqcup \operatorname{NNF}(D) \\ \operatorname{NNF}(C \sqcap D) = \operatorname{NNF}(C) \sqcap \operatorname{NNF}(D) \\ \operatorname{NNF}(\neg(C \sqcup D)) = \operatorname{NNF}(\neg C) \sqcap \operatorname{NNF}(\neg D) \\ \operatorname{NNF}(\neg(C \sqcap D)) = \operatorname{NNF}(\neg C) \sqcup \operatorname{NNF}(\neg D) \\ \operatorname{NNF}(\forall R.C) = \forall R.\operatorname{NNF}(C) \\ \operatorname{NNF}(\exists R.C) = \exists R.\operatorname{NNF}(C) \\ \operatorname{NNF}(\neg \forall R.C) = \exists R.\operatorname{NNF}(\neg C) \\ \operatorname{NNF}(\neg \exists R.C) = \forall R.\operatorname{NNF}(\neg C) \\ \operatorname{NNF}(\neg \exists R.C) = \forall R.\operatorname{NNF}(\neg C) \\ \operatorname{NNF}(\neg C) = \exists R.\operatorname{NNF}(\neg C) \\ \operatorname{NN$$

K and NNF(K) have the same models (are logically equivalent).

Example

$$P \sqsubseteq (E \sqcap U) \sqcup \neg (\neg E \sqcup D).$$

In negation normal form:

$$\neg P \sqcup (E \sqcap U) \sqcup (E \sqcap \neg D).$$

ALC tableaux: contents

- Transformation to negation normal form
- Naive tableaux algorithm
- Tableaux algorithm with blocking

Naive tableaux algorithm

Reduction to (un)satisfiability.

Idea:

- Given knowledge base K
- Attempt construction of a tree (called *Tableau*), which represents a model of K. (It's actually rather a *Forest*.)
- If attempt fails, K is unsatisfiable.

The Tableau

- Nodes represent elements of the domain of the model
 - \rightarrow Every node x is labeled with a set L(x) of class expressions. C \in L(x) means: "x is in the extension of C"
- Edges stand for role relationships:
 - \rightarrow Every edge <x,y> is labeled with a set L(<x,y>) of role names.
 - $R \in L(\langle x,y \rangle)$ means: "(x,y) is in the extension of R"

Simple example

C(a)

 $C \sqsubseteq \exists R.D$

 $D \sqsubseteq E$

Does this entail (∃R.E)(a)?

(add ∀R.¬E(a) and show unsatisfiability)

Another example

Does this entail (∃R.E)(a)?

(add ∀R.¬E(a) and show unsatisfiability)

Formal Definition

- Input: K=TBox + ABox (in NNF)
- Output: Whether or not K is satisfiable.
- A tableau is a directed labeled graph
 - nodes are individuals or (new) variable names
 - nodes x are labeled with sets L(x) of classes
 - edges <x,y> are labeled with sets L(<x,y>) of role names

Initialisation

- Make a node for every individual in the ABox.
- Every node is labeled with the corresponding class names from the ABox.
- There is an edge, labeled with R, between a and b, if R(a,b) is in the ABox.

 (If there is no ABox, the initial tableau consists of a node x with empty label.)

Example initialisation

Human
☐ ∃hasParent.Human

Orphan ☐ Human ☐ ¬∃hasParent.Alive

Orphan(harrypotter)

hasParent(harrypotter,jamespotter)

Careful: need NNF!

¬Human ⊔ ∃hasParent.Human

¬Orphan ⊔ (Human ⊓ ∀hasParent.¬Alive)

Orphan(harrypotter)

hasParent(harrypotter,jamespotter)

Constructing the tableau

- Non-deterministically extend the tableau using the rules on the next slide.
- Terminate, if
 - there is a contradiction in a node label (i.e., it contains classes C and ¬C, or it contains ⊥), or
 - none of the rules is applicable.
- If the tableau does not contain a contradiction, then the knowledge base is satisfiable.
 Or more precisely: If you can make a choice of rule applications such that no contradiction occurs and the process terminates, then the knowledge base is satisfiable.

Naive ALC tableaux rules

 \sqcap -rule: If $C \sqcap D \in \mathcal{L}(x)$ and $\{C, D\} \not\subseteq \mathcal{L}(x)$, then set $\mathcal{L}(x) \leftarrow \{C, D\}$.

- \sqcup -rule: If $C \sqcup D \in \mathcal{L}(x)$ and $\{C, D\} \cap \mathcal{L}(x) = \emptyset$, then set $\mathcal{L}(x) \leftarrow C$ or $\mathcal{L}(x) \leftarrow D$.
- \exists -rule: If $\exists R.C \in \mathcal{L}(x)$ and there is no y with $R \in L(x,y)$ and $C \in \mathcal{L}(y)$, then
 - 1. add a new node with label y (where y is a new node label),
 - 2. set $\mathcal{L}(x,y) = \{R\}$, and
 - 3. set $\mathcal{L}(y) = \{C\}.$
- \forall -rule: If $\forall R.C \in \mathcal{L}(x)$ and there is a node y with $R \in \mathcal{L}(x,y)$ and $C \notin \mathcal{L}(y)$, then set $\mathcal{L}(y) \leftarrow C$.

TBox-rule: If C is a TBox statement and $C \notin \mathcal{L}(x)$, then set $\mathcal{L}(x) \leftarrow C$.

Example

¬Alive(jamespotter)

i.e. add: Alive(jamespotter)

and search for contradiction

¬Human ⊔ ∃hasParent.Human

¬Orphan ⊔ (Human ⊓ ∀hasParent.¬Alive)

Orphan(harrypotter)

hasParent(harrypotter,jamespotter)

26

ALC tableaux: contents

- Transformation to negation normal form
- Naive tableaux algorithm
- Tableaux algorithm with blocking

There's a termination problem

TBox: ∃R.⊤

ABox: \top (a₁)

- Obviously satisfiable: Model M with domain elements $a_1^M, a_2^M, ...$ and $R^M(a_i^M, a_{i+1}^M)$ for all $i \ge 1$
- but tableaux algorithm does not terminate!

28

Solution?

Actually, things repeat!

Idea: it is not necessary to expand x, since it's simply a copy of a.

⇒ Blocking

Blocking

- x is blocked (by y) if
 - x is not an individual (but a variable)
 - y is a predecessor of x and $L(x) \subseteq L(y)$
 - or a predecessor of x is blocked

Here, x is blocked by a.

Constructing the tableau

- Non-deterministically extend the tableau using the rules on the next slide, but only apply a rule if x is not blocked!
- Terminate, if
 - there is a contradiction in a node label (i.e., it contains classes C and ¬C), or
 - none of the rules is applicable.
- If the tableau does not contain a contradiction, then the knowledge base is satisfiable.
 Or more precisely: If you can make a choice of rule applications such that no contradiction occurs and the process terminates, then the knowledge base is satisfiable.

Naive ALC tableaux rules

 \sqcap -rule: If $C \sqcap D \in \mathcal{L}(x)$ and $\{C, D\} \not\subseteq \mathcal{L}(x)$, then set $\mathcal{L}(x) \leftarrow \{C, D\}$.

- \sqcup -rule: If $C \sqcup D \in \mathcal{L}(x)$ and $\{C, D\} \cap \mathcal{L}(x) = \emptyset$, then set $\mathcal{L}(x) \leftarrow C$ or $\mathcal{L}(x) \leftarrow D$.
- \exists -rule: If $\exists R.C \in \mathcal{L}(x)$ and there is no y with $R \in L(x,y)$ and $C \in \mathcal{L}(y)$, then
 - 1. add a new node with label y (where y is a new node label),
 - 2. set $\mathcal{L}(x,y) = \{R\}$, and
 - 3. set $\mathcal{L}(y) = \{C\}.$

 \forall -rule: If $\forall R.C \in \mathcal{L}(x)$ and there is a node y with $R \in \mathcal{L}(x,y)$ and $C \notin \mathcal{L}(y)$, then set $\mathcal{L}(y) \leftarrow C$.

TBox-rule: If C is a TBox statement and $C \notin \mathcal{L}(x)$, then set $\mathcal{L}(x) \leftarrow C$.

Apply only if x is not blocked!

Example (0)

- We want to show that Human(tweety) does not hold,
 i.e. that ¬Human(tweety) is entailed.
- We will not be able to show this.
 I.e. Human(tweety) is possible.
- Shorter notation:

```
H <u>□</u> ∃p.H
B(t)
```

¬H(t) entailed?

Example (0)

Knowledge base $\{\neg H \sqcup \exists p.H, B(t), H(t)\}$

expansion stops. Cannot find contradiction!

Example (0) the other case

Knowledge base $\{\neg H \sqcup \exists p.H, B(t), \neg H(t)\}$

t

No further expansion possible: ⊔-rule not applicable! Hence knowledge base is satisfiable.

Example(1)

Show, that
Professor □ (Person □ Unversitymember)
□ (Person □ ¬PhDstudent)
entails that every Professor is a Person.

P □ ¬E
P
¬E
¬P □ (E □ U) □ (E □ ¬S)
1. ¬P (contradiction)
2. (E □ U) □ (E □ ¬S)
1. E □ U
E (contradiction)
2. E □ ¬S
E (contradiction)

36

X

Example (2)


```
Show that
    hasChild(john, peter)
    hasChild(john, paul)
    male(peter)
    male(paul)
does not entail ∀hasChild.male(john).

¬∀hasChild.male ≡ ∃hasChild.¬male

¬∀hasChild.male(john).
```


Example (3)

Show that the knowledge base

Bird □ Flies

Penguin □ Bird

Penguin □ Flies □ ⊥

Penguin(tweety)

is unsatisfiable.

tweety

P
$$\neg P \sqcup B$$
 $\neg B \sqcup F$
 $\neg P \sqcup \neg F$
1. $\neg P$ (contradiction)
2. B

1. ¬B (contradiction)

1. ¬P (contradiction)

2. $\neg F$ (contradiction)

Example (4)

Show that the knowledge base

C(a) C(c)

R(a,b) R(a,c)

S(a,a) S(c,b)

 $C \sqsubseteq \forall S.A$

 $A \sqsubseteq \exists R. \exists S. A$

 $A \sqsubseteq \exists R.C$

entails ∃R.∃R.∃S.A(a).

39

Example (4)

 $\neg \exists R. \exists R. \exists S. A \equiv \forall R. \forall R. \forall S. \neg A$

TBox:
¬C □ ∀S.A
¬A □ ∃R.∃S.A
¬A □ ∃R.C

Contents

- Important inference problems
- Tableaux algorithm for ALC
- Tableaux algorithm for SHIQ

Tableaux Algorithm for SHIQ

- Basic idea is the same.
- Blocking rule is more complicated
- Other modifications are also needed.

Transform. to negation normal form

Given a knowledge base K.

- Replace C

 □ D by ¬C □ D.
- Apply the equations on the next slide exhaustively.

Resulting knowledge base: NNF(K)

Negation normal form of K.

Negation occurs only directly in front of atomic classes.

$$\operatorname{NNF}(C) = C$$
 if C is a class name $\operatorname{NNF}(\neg C) = \neg C$ if C is a class name

$$NNF(C) = C \quad \text{if } C \text{ is a class name}$$

$$NNF(\neg C) = \neg C \quad \text{if } C \text{ is a class name}$$

$$NNF(\neg \neg C) = NNF(C)$$

$$NNF(C \sqcup D) = NNF(C) \sqcup NNF(D)$$

$$NNF(C \sqcap D) = NNF(C) \sqcap NNF(D)$$

$$NNF(\neg(C \sqcup D)) = NNF(\neg C) \sqcap NNF(\neg D)$$

$$NNF(\neg(C \sqcap D)) = NNF(\neg C) \sqcup NNF(\neg D)$$

$$NNF(\neg(C \sqcap D)) = NNF(\neg C) \sqcup NNF(\neg D)$$

$$NNF(\forall R.C) = \forall R.NNF(C)$$

$$NNF(\exists R.C) = \exists R.NNF(C)$$

$$NNF(\neg \forall R.C) = \exists R.NNF(\neg C)$$

$$NNF(\neg \exists R.C) = \forall R.NNF(\neg C)$$

 $NNF(\leq n R.C)$ $= \le n R.NNF(C)$

 $NNF(\geq n R.C)$ $= \ge n R.NNF(C)$

 $NNF(\neg \leq n R.C)$ $= \geq (n+1)R.NNF(C)$

 $NNF(\neg \geq n R.C)$ = \leq (n-1)R.NNF(C), where \leq (-1)R.C = \perp

Formal Definition

- A tableau is a directed labeled graph
 - nodes are individuals or (new) variable names
 - nodes x are labeled with sets L(x) of classes
 - edges <x,y> are labeled
 - either with sets L(<x,y>) of role names or inverse role names
 - or with the symbol = (for equality)
 - or with the symbol ≠ (for inequality)

Initialisation

- Make a node for every individual in the ABox. These nodes are called root nodes.
- Every node is labeled with the corresponding class names from the ABox.
- There is an edge, labeled with R, between a and b, if R(a,b) is in the ABox.
- There is an edge, labeled ≠, between a and b if a ≠ b is in the ABox.
- There are no = relations (yet).

Notions

- We write S⁻ as S.
- If R ∈ L(<x,y>) and R ⊆ S (where R,S can be inverse roles), then
 - y is an S-successor of x and
 - x is an S-predecessor of y.
- If y is an S-successor or an S-predecessor of x, then y is an neighbor of x.
- Ancestor is the transitive closure of Predecessor.

Blocking for SHIQ

- x is blocked by y if x,y are not root nodes and
 - the following hold: ["x is directly blocked"]
 - no ancestor of x is blocked
 - there are predecessors y', x' of x
 - y is a successor of y' and x is a successor of x'
 - L(x) = L(y) and L(x') = L(y')
 - L(<x',x>) = L(<y',y>)
 - or the following holds: ["x is indirectly blocked"]
 - an ancestor of x is blocked or
 - x is successor of some y with L(<y,x>) = ∅

Constructing the tableau

- Non-deterministically extend the tableau using the rules on the next slide.
- Terminate, if
 - there is a contradiction in a node label, i.e.,
 - it contains ⊥ or classes C and ¬C or
 - it contains a class ≤ nR.C and
 x also has (n+1) R-successors y_i and y_i≠ y_i (for all i ≠ j)
 - or none of the rules is applicable.
- If the tableau does not contain a contradiction, then the knowledge base is satisfiable.
 Or more precisely: If you can make a choice of rule applications such that no contradiction occurs and the process terminates, then the knowledge base is satisfiable.

SHIQ Tableaux Rules

 \sqcap -rule: If x is not indirectly blocked, $C \sqcap D \in \mathcal{L}(x)$, and $\{C, D\} \not\subseteq \mathcal{L}(x)$, then set $\mathcal{L}(x) \leftarrow \{C, D\}$.

 \sqcup -rule: If x is not indirectly blocked, $C \sqcup D \in \mathcal{L}(x)$ and $\{C, D\} \sqcap \mathcal{L}(x) = \emptyset$, then set $\mathcal{L}(x) \leftarrow C$ or $\mathcal{L}(x) \leftarrow D$.

 \exists -rule: If x is not blocked, $\exists R.C \in \mathcal{L}(x)$, and there is no y with $R \in \mathcal{L}(x,y)$ and $C \in \mathcal{L}(y)$, then

- 1. add a new node with label y (where y is a new node label),
- 2. set $\mathcal{L}(x,y) = \{R\}$ and $\mathcal{L}(y) = \{C\}$.

 \forall -rule: If x is not indirectly blocked, $\forall R.C \in \mathcal{L}(x)$, and there is a node y with $R \in \mathcal{L}(x,y)$ and $C \notin \mathcal{L}(y)$, then set $\mathcal{L}(y) \leftarrow C$.

TBox-rule: If x is not indirectly blocked, C is a TBox statement, and $C \notin \mathcal{L}(x)$, then set $\mathcal{L}(x) \leftarrow C$.

SHIQ Tableaux Rules

trans-rule: If x is not indirectly blocked, $\forall S.C \in \mathcal{L}(x)$, S has a transitive subrole R, and x has an R-neighbor y with $\forall R.C \notin \mathcal{L}(y)$, then set $\mathcal{L}(y) \leftarrow \forall R.C$.

choose-rule: If x is not indirectly blocked, $\leq nS.C \in \mathcal{L}(x)$ or $\geq nS.C \in \mathcal{L}(x)$, and there is an S-neighbor y of x with $\{C, \text{NNF}(\neg C)\} \cap \mathcal{L}(y) = \emptyset$, then set $\mathcal{L}(y) \leftarrow C$ or $\mathcal{L}(y) \leftarrow \text{NNF}(\neg C)$.

 \geq -rule: If x is not blocked, $\geq nS.C \in \mathcal{L}(x)$, and there are no n S-neighbors y_1, \ldots, y_n of x with $C \in \mathcal{L}(y_i)$ and $y_i \not\approx y_j$ for $i, j \in \{1, \ldots, n\}$ and $i \neq j$, then

- 1. create n new nodes with labels y_1, \ldots, y_n (where the labels are new),
- 2. set $\mathcal{L}(x, y_i) = \{S\}$, $\mathcal{L}(y_i) = \{C\}$, and $y_i \not\approx y_j$ for all $i, j \in \{1, \ldots, n\}$ with $i \neq j$.

- \leq -rule: If x is not indirectly blocked, $\leq nS.C \in \mathcal{L}(x)$, there are more than n S-neighbors y_i of x with $C \in \mathcal{L}(y_i)$, and x has two S-neighbors y, z such that y is neither a root node nor an ancestor of $z, y \not\approx z$ does not hold, and $C \in \mathcal{L}(y) \cap \mathcal{L}(z)$, then
 - 1. set $\mathcal{L}(z) \leftarrow \mathcal{L}(y)$,
 - 2. if z is an ancestor of x, then $\mathcal{L}(z,x) \leftarrow \{\text{Inv}(R) \mid R \in \mathcal{L}(x,y)\},\$
 - 3. if z is not an ancestor of x, then $\mathcal{L}(x,z) \leftarrow \mathcal{L}(x,y)$,
 - 4. set $\mathcal{L}(x,y) = \emptyset$, and
 - 5. set $u \not\approx z$ for all u with $u \not\approx y$.
- \leq -root-rule: If $\leq nS.C \in \mathcal{L}(x)$, there are more than n S-neighbors y_i of x with $C \in \mathcal{L}(y_i)$, and x has two S-neighbors y, z which are both root nodes, $y \not\approx z$ does not hold, and $C \in \mathcal{L}(y) \cap \mathcal{L}(z)$, then
 - 1. set $\mathcal{L}(z) \leftarrow \mathcal{L}(y)$,
 - 2. for all directed edges from y to some w, set $\mathcal{L}(z, w) \leftarrow \mathcal{L}(y, w)$,
 - 3. for all directed edges from some w to y, set $\mathcal{L}(w,z) \leftarrow \mathcal{L}(w,y)$,
 - 4. set $\mathcal{L}(y) = \mathcal{L}(w, y) = \mathcal{L}(y, w) = \emptyset$ for all w,
 - 5. set $u \not\approx z$ for all u with $u \not\approx y$, and
 - 6. set $y \approx z$.

Example (1): cardinalities


```
Show, that
    hasChild(john, peter)
    hasChild(john, paul)
    male(peter)
    male(paul)
    ≤2hasChild.⊤(john)

does not entail ∀hasChild.male(john).
```

 $\text{now apply} \leq$

Example (1): cardinalities


```
Show, that
    hasChild(john, peter)
    hasChild(john, paul)
    male(peter)
    male(paul)
    ≤2hasChild. T(john)
does not entail ∀hasChild.male(john).
```

backtracking!

 $\text{now apply} \leq$

Example (1): cardinalities – again


```
Show, that
    hasChild(john, peter)
    hasChild(john, paul)
    male(peter)
    male(paul)
    ≤2hasChild.⊤(john) and peter ≠ paul
does not entail ∀hasChild.male(john).
```


Example (2): cardinalities

Show, that ≥2hasSon.⊤(john) entails ≥2hasChild.⊤(john). $\neg \ge 2$ hasSon. $\top \equiv \le 1$ hasChild. \top

hasSon ⊑ hasChild

hasSon-neighbors are also hasChild-neighbors, tableau terminates with contradiction

Example (3): choose

≥3hasSon(john)

≤2hasSon.male(john)

Is this contradictory?

No, because the following tableau is complete.

≥3hasSon ≤2hasSon.male

Example (4): inverse roles

∃hasChild.human(john)

human ⊑ ∀hasParent.human

hasChild

hasParent

hasParent

zu zeigen: human(john)

 ∃hasChild.human
 john
 hasChild
 human
 human
 thuman
 human
 human<

john is hP -predecessor of x, hence hP-neighbor of x

Example (5): Transitivity and Blocking


```
human ⊑ ∃hasFather.⊤
human ⊑ ∀hasAncestor.human
hasFather ⊑ hasAncestor Trans(hasAncestor)
human(john)
```

Does this entail ≤1hasFather. T(john)?

Negation: ≥2hasFather.⊤(john)

59

Example (5): Transitivity and Blocking

human ⊑ ∃hasFather.⊤

∀hasAncestor.human(john)

human(john)

Trans(hasAncestor)

≥2hasFather. T(john)

same as branch above

Example (6): Pairwise Blocking

 \neg C \sqcap (\leq 1F) \sqcap \exists F $^{-}$.D \sqcap \forall R $^{-}$.(\exists F $^{-}$.D), where D = C \sqcap (\leq 1F) \sqcap \exists F. \neg C, Trans(R), and F \sqsubseteq R, is not satisfiable.

Without pairwise blocking, z would be blocked, which shouldn't happen: Expansion of $\exists F.\neg C$ yields $\neg C$ for node y as required.

61

Example (7): Dynamic Blocking

A $\sqcap \exists S.(\exists R. \top \sqcap \exists P. \top \sqcap \forall R.C \sqcap \forall P.(\exists R. \top) \sqcap \forall P.(\forall R.C) \sqcap \forall P.(\exists P. \top))$ with C = $\forall R^-.(\forall P^-.(\forall S^-. \neg A))$ and Trans(P), is not satisfiable. Part of the tableau:

At this stage, z would be blocked by y (assuming the presence of another pair). However, when C from v is expanded, z becomes unblocked, which is necessary in order to label w with C which in turn labels x with $\neg A$, yielding the required contradiction.

Tableaux Reasoners

- Fact++
 - http://owl.man.ac.uk/factplusplus/
- Pellet
 - http://clarkparsia.com/pellet/
- RacerPro
 - http://www.racer-systems.com/products/racerpro/
 - Volker Haarslev, Kay Hidde, Ralf Möller, Michael Wessel, The RacerPro Knowledge Representation and Reasoning System. Semantic Web journal, to appear.
- Hermit
 - http://hermit-reasoner.com/

