Knowledge Representation for the Semantic Web

Winter Quarter 2010

Slides 2 – 01/07/2010

Pascal Hitzler
Kno.e.sis Center
Wright State University, Dayton, OH
http://www.knoesis.org/pascal/
Slides are based on

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph

Foundations of Semantic Web Technologies

Chapman & Hall/CRC, 2010

Flyer with special offer is available.

http://www.semantic-web-book.org
1. The Semantic Web Layer Cake

2. Essentials of the eXtensible Markup Language XML

3. Class project – status

4. Class presentations – first topics
Tim Berners-Lee version, 2000

http://www.w3.org/2000/Talks/1206-xml2k-tbl/Overview.html
Tim Berners-Lee version, 2003

http://www.w3.org/2003/Talks/0922-rsoc-tbl/
Tim Berners-Lee version, 2006

http://www.w3.org/2006/Talks/0718-aaai-tbl/
Planned coverage in this lecture

+ conjunctive queries for OWL
Planned coverage in this lecture

+ conjunctive queries for OWL
Today’s Session

1. The Semantic Web Layer Cake

2. Essentials of the eXtensible Markup Language XML

 Appendix A in the textbook, plus some material on namespaces and URIs taken from Chapter 2

3. Class project – status

4. Class presentations – first topics
XML contents

- Motivation
- Syntax
- URIs
- Namespaces
- XML Schema
Markup-languages

- Basic idea: adding additional information or structure to (unstructured) text

- to *annotate* text
 Webster’s: annotation –
 a note added by way of comment or explanation

- text = data
- additional info = metadata (data about data)

- usually done by way of *tags*:
 `<tag-name> ... Text ... </tag-name>`
 [opening tag] [closing tag]
Markup-languages

• Most prominent example: HTML
 Annotations used for encoding display information

• `<i>This book</i>` has the title `FOST`. Browser shows:

 This book has the title *FOST*.

• Same idea can be used for content description:

Tags may be nested

<lecture>
 <title> KR4SW </title>
 <lecturer>
 <title> Prof. Dr. </title>
 <firstName> Pascal </firstName>
 <lastName> Hitzler </lastName>
 </lecturer>
</lecture>
Tree structure

<lecture>
 <title> KR4SW </title>
 <lecturer>
 <title> Prof. Dr. </title>
 <firstName> Pascal </firstName>
 <lastName> Hitzler </lastName>
 </lecturer>
</lecture>
XML contents

• Motivation

• Syntax

• URIs

• Namespaces

• XML Schema
XML

- eXtensible Markup Language
- origin: structured text
- W3C standard for data exchange
 [see www.w3.org for W3C]
 - input and output data of applications can be described using XML
 - additionally only needed: a standardized description / vocabulary
- complementary to HTML
 - HTML is for display/presentation
 - XML is for describing content
- database view: XML as data model for semi-structured data
XML-Syntax: prolog

• every XML document is a text document

• every XML document begins with a declaration containing
 – the version number of the used standard
 – and optionally, the character encoding.

• example:

 <!--xml version="1.0" encoding="utf-8"-->
XML-Syntax: XML Elements

- XML elements
 - describe objects which are enclosed in matching tag-pairs.
 - can contain text and/or further XML elements, arbitrarily nested.
 - empty elements can be abbreviated, e.g. `<year></year>` can be written as `<year/>`.
 - the outermost element is called root element (there is only one)

```
opening tag:       <author>
subelements:      <firstName>Sebastian</firstName>
                  <lastName>Rudolph</lastName>
                  <email>rudolph@kit.edu</email>
text:             This is some text inside an XML element.
closing tag:      </author>
```
XML-Syntax: XML Attributes

- XML attributes
 - are name-string-pairs in opening tags (or self-closing tags).
 - are associated with the corresponding XML element.
 - are an alternative means to sub-elements for describing data.

```xml
<author email="rudolph@kit.edu">
  <firstName>Sebastian</firstName>
  <lastName>Rudolph</lastName>
  This is some text inside an XML element.
</author>
```
XML-Syntax, XML vs. HTML

- XML Documents which are syntactically correct, are said to be **well-formed**.

- XML vs HTML:
 - HTML uses a fixed vocabulary (set of tags) with a fixed meaning (for display of text)
 - XML allows free choice of tag names, whose meaning is not fixed.

```xml
<h1>Bib</h1>
<p><i>FOST</i> <author>...</author> <b>2010</b> <year>2010</year></p>
<p></p>
<Bib id="o1">
<title>FOST</title>
<author>...</author>
<year>2010</year>
<p></p>
</Bib>
```
XML contents

• Motivation

• Syntax

• URIs

• Namespaces

• XML Schema
URIs

- URI = Uniform Resource Identifier
- URL = Uniform Resource Locator (has a location on the WWW)
- IRI = Internationalized Resource Identifier (uses Unicode)

\[\text{URLs} \subseteq \text{URIs} \subseteq \text{IRIs} \]

- used for identifying Web resources
- resources can be anything that has an identity in the context of an application (books, locations, humans, abstract concepts, etc.)
- analogous to, e.g., ISBN for books
URIs – format

scheme: //[authority]path[?query][#fragment]

- scheme: type of URI, e.g. http, ftp, mailto, file, irc
- authority: typically a domain name
- path: e.g. /etc/passwd/
- query: optional; provides non-hierarchical information. Usually for parameters, e.g. for a web service
- fragment: optional; often used to address part of a retrieved resource, e.g. section of a HTML file.

- not all characters are allowed in URIs.
URIs

• where do they come from?

• what URIs to use?

• what does a URI stand for?

http://www.pascal-hitzler.de – is this a URI for a web page or for the person “Pascal Hitzler”?

• What about URIs which do not dereference?
XML contents

- Motivation
- Syntax
- URIs
- Namespaces
- XML Schema
Namespaces

• same tag name – probably better to disambiguate
Namespaces

- disambiguate using namespaces
- same mechanism can be used for indicating different sources for data

```xml
<lecture xmlns:lec="http://example.org/lecture/"
         xmlns:person="http://example.org/person/>
  <lec:title> KR4SW </lec:title>
  <lec:lecturer>
    <person:title> Prof. Dr. </person:title>
    <person:firstName> Pascal </person:firstName>
    <person:lastName> Hitzler </person:lastName>
  </lec:lecturer>
</lec:lecture>
```
Namespaces – declaration mechanisms

- **Namespace declaration**
 Usage: namespace:name in XML element names
 Declaration: xmlns:namespace="\"<uri>\"" in XML opening tags or empty-element tags. Affects XML subtree, multiple declarations possible.

- **Base namespace (only RDF)**
 Usage: non-URI name as value for some RDF/XML elements.
 Declaration: xml:base="\"<uri>\"" in XML opening tags or empty-element tags. Affects XML subtree, multiple declarations possible.

- **Entity declaration**
 This is part of so-called *Document Type Definitions*.
 Usage: &entity; in XML attribute values or RDF literal values.
 Declaration: <!ENTITY entity ‘text’> in initial DOCTYPE declaration. Affects whole document, only one declaration possible.
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF
 [<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY otherOnt "http://example.org/otherOntology/" >
]>

Usage examples follow below.

We will not discuss Document Type Declarations (DTDs) in more detail – they are a weaker mechanism than XML schema. Just use the above as a form of “macro”.
XML contents

- Motivation
- Syntax
- URIs
- Namespaces
- XML Schema
XML Schema

- XML allows a lot of freedom in encoding information

 <author>Sebastian Rudolph</author>

 <author name="Sebastian Rudolph"/>

 <author><fullName>Sebastian Rudolph</fullName></author>

 <author><firstName>Sebastian</firstName><secondName>Rudolph</secondName></author>

 <author givenName="Sebastian" surname="Rudolph"/>
XML Schema

- These degrees of freedom get in the way when exchanging XML documents between applications!

- It is necessary to come up with agreements about the structure of the information, including the names of tags and attributes, and whether certain subelements are required or not.

- XML Schema is a W3C standard which provides for this.

- XML schemas are themselves written in XML.

- An XML document is said to be valid if it adheres to a corresponding XML schema.
XML Schema

• An XML Schema document is a well-formed XML document which contains *XML schema definitions*.
• An XML schema definition begins with an opening tag like

```xml
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
```

it then contains *element types, which can contain attribute types*, which themselves refer to predefined or user-defined datatypes.

• datatypes are, e.g. `xsd:integer`, `xsd:string`, `xsd:time`, `xsd:date`, `xsd:anyURI`, `xsd:ID` (a specific kind of string used as identifier of XML elements)
```xml
<?xml version="1.1" encoding="utf-16"?>
<!DOCTYPE xsd:schema
  [  <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
  ]>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <xsd:element name="author" type="&xsd;string"
    minOccurs="1" maxOccurs="unbounded">
    <xsd:attribute name="email" type="&xsd;string"
      use="required">
    </xsd:attribute>
    <xsd:attribute name="homepage"
      type="&xsd;anyURI" use="optional">
    </xsd:attribute>
  </xsd:element>
</xsd:schema>
```
XML Schema Example

```xml
<xsd:element name="author" type="&xsd;string"
    minOccurs="1" maxOccurs="unbounded">
    <xsd:attribute name="email" type="&xsd;string"
        use="required">
    <xsd:attribute name="homepage" type="&xsd;anyURI"
        use="optional">
    </xsd:element>
</xsd:element>

<author email="email1@example.org" homepage="http://korrekt.org">
    Markus Kroetzsch
</author>
<author email="email2@example.org">
    Sebastian Rudolph
</author>
```
XML Schema – user-defined types

Simple types: obtained by restricting other types.

```xml
<xsd:simpleType name="humanAge">
  <xsd:restriction base="&xsd;integer">
    <xsd:minInclusive value="0"/>
    <xsd:maxInclusive value="200"/>
  </xsd:restriction>
</xsd:simpleType>
```

No use of embedded element or attribute types!
<xsd:complexType name="bookType">
 <xsd:sequence>
 <xsd:element name="author" type="&xsd;string"
 minOccurs="1" maxOccurs="unbounded" />
 <xsd:element name="title" type="&xsd;string"
 minOccurs="1" maxOccurs="1" />
 <xsd:element name="publisher" type="&xsd;string"
 minOccurs="1" maxOccurs="1" />
 <xsd:element name="year" type="&xsd;gYear"
 minOccurs="1" maxOccurs="1" />
 </xsd:sequence>
 <xsd:attribute name="ISBNnumber" type="&xsd;nonNegativeInteger"
 use="optional" />
</xsd:complexType>
<xsd:complexType name="researchBookType">
 <xsd:extension base="bookType">
 <xsd:sequence>
 <xsd:element name="field" type="&xsd;string" />
 </xsd:sequence>
 <xsd:attribute name="price" type="&xsd;nonNegativeInteger" use="optional" />
 </xsd:complexType>
Today’s Session

1. The Semantic Web Layer Cake

2. Essentials of the eXtensible Markup Language XML

3. Class project – status

4. Class presentations – first topics
Class project – status

• Aircrafts
• American Football
• Car
• Computer Science
• Cuisine
• Networks
• Parasite lifecycle
• People at University
• Trust
Today’s Session

1. The Semantic Web Layer Cake

2. Essentials of the eXtensible Markup Language XML

3. Class project – status

4. Class presentations – first topics
Class presentations – first topics

Standards:
• RDFa – embedding RDF in HTML (W3C standard)
• SKOS – data model for sharing and linking knowledge organization systems via the Web (W3C standard)

Tools:
• Protege – Ontology editing tool

Research papers:
• Parallel Materialization of the Finite RDFS Closure for Hundreds of Millions of Triples (Weaver, Hendler, ISWC2009)
• Scalable Distributed Reasoning using MapReduce (Urbani, Kotoulas, Oren, van Harmelen, ISWC2009)
Topic next Tuesday: RDF Part I

Exercise session planned for Tuesday, 26th of January

Estimated (incomplete) breakdown of sessions:

- Intro + XML: 2
- RDF: 3
- OWL and Logic: 5
- SPARQL and Querying: 2
- Class Presentations: 3
- Exercise sessions: 3